MATHEMATICS RESOURCES GCSE MATHEMATICS

Contents

Mathematics specification	2
General Marking Guidance	62
Foundation Mathematics Paper 1	66
Foundation Mathematics Paper 1 MS	86
Foundation Mathematics Paper 2	94
Foundation Mathematics Paper 2 MS	114
Foundation Mathematics Paper 3	122
Foundation Mathematics Paper 3 MS	142
Higher Mathematics Paper 1	148
Higher Mathematics Paper 1 MS	168
Higher Mathematics Paper 2	176
Higher Mathematics Paper 2 MS	196
Higher Mathematics Paper 3	204
Higher Mathematics Paper 3 MS	224

GCSE (9-1) Mathematics

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics (1MA1)

First teaching from September 2015

First certification from June 2017

Issue 2

PEARSON

ALWAYS LEARNING

Pearson Edexcel Level 1/Level 2 GCSE (9–1) in Mathematics (1MA1)

Specification

First certification 2017

Issue 2

ALWAYS LEARNING

Edexcel, BTEC and LCCI qualifications

Edexcel, BTEC and LCCI qualifications are awarded by Pearson, the UK's largest awarding body offering academic and vocational qualifications that are globally recognised and benchmarked. For further information, please visit our qualification websites at www.edexcel.com, www.btec.co.uk or www.lcci.org.uk. Alternatively, you can get in touch with us using the details on our contact us page at qualifications.pearson.com/contactus

About Pearson

Pearson is the world's leading learning company, with 40,000 employees in more than 70 countries working to help people of all ages to make measurable progress in their lives through learning. We put the learner at the centre of everything we do, because wherever learning flourishes, so do people. Find out more about how we can help you and your learners at qualifications.pearson.com

This specification is Issue 2. Key changes are sidelined. We will inform centres of any changes to this issue. The latest issue can be found on our website.

References to third party material made in this specification are made in good faith. Pearson does not endorse, approve or accept responsibility for the content of materials, which may be subject to change, or any opinions expressed therein. (Material may include textbooks, journals, magazines and other publications and websites.)

All information in this specification is correct at time of publication.

ISBN 978 1 446 92720 5

All the material in this publication is copyright © Pearson Education Limited 2015

From Pearson's Expert Panel for World Class Qualifications

"The reform of the qualifications system in England is a profoundly important change to the education system. Teachers need to know that the new qualifications will assist them in helping their learners make progress in their lives.

When these changes were first proposed we were approached by Pearson to join an 'Expert Panel' that would advise them on the development of the new qualifications.

We were chosen, either because of our expertise in the UK education system, or because of our experience in reforming qualifications in other systems around the world as diverse as Singapore, Hong Kong, Australia and a number of countries across Europe.

We have guided Pearson through what we judge to be a rigorous qualification development process that has included:

- Extensive international comparability of subject content against the highestperforming jurisdictions in the world
- Benchmarking assessments against UK and overseas providers to ensure that they are at the right level of demand
- Establishing External Subject Advisory Groups, drawing on independent subjectspecific expertise to challenge and validate our qualifications
- Subjecting the final qualifications to scrutiny against the DfE content and Ofqual accreditation criteria in advance of submission.

Importantly, we have worked to ensure that the content and learning is future oriented. The design has been guided by what is called an 'Efficacy Framework', meaning learner outcomes have been at the heart of this development throughout.

We understand that ultimately it is excellent teaching that is the key factor to a learner's success in education. As a result of our work as a panel we are confident that we have supported the development of qualifications that are outstanding for their coherence, thoroughness and attention to detail and can be regarded as representing world-class best practice."

Sir Michael Barber (Chair)	Professor Sing Kong Lee
Chief Education Advisor, Pearson plc	Director, National Institute of Education, Singapore
Bahram Bekhradnia	Professor Jonathan Osborne
President, Higher Education Policy Institute	Stanford University
Dame Sally Coates	Professor Dr Ursula Renold
Principal, Burlington Danes Academy	Federal Institute of Technology, Switzerland
Professor Robin Coningham	Professor Bob Schwartz
Pro-Vice Chancellor, University of Durham	Harvard Graduate School of Education
Dr Peter Hill	

Former Chief Executive ACARA

Introduction

The Pearson Edexcel Level 1/Level 2 GCSE (9 to 1) in Mathematics is designed for use in schools and colleges. It is part of a suite of GCSE qualifications offered by Pearson.

Purpose of the specification

This specification sets out:

- the objectives of the qualification
- any other qualification that a student must have completed before taking the qualification
- any prior knowledge and skills that the student is required to have before taking the qualification
- any other requirements that a student must have satisfied before they will be assessed or before the qualification will be awarded
- the knowledge and understanding that will be assessed as part of the qualification
- the method of assessment and any associated requirements relating to it
- the criteria against which a student's level of attainment will be measured (such as assessment criteria).

Rationale

The Pearson Edexcel Level 1/Level 2 GCSE (9–1) in Mathematics meets the following purposes, which fulfil those defined by the Office of Qualifications and Examinations Regulation (Ofqual) for GCSE qualifications in their *GCSE* (9 to 1) *Qualification Level Conditions and Requirements* document, published in April 2014.

The purposes of this qualification are to:

- provide evidence of students' achievements against demanding and fulfilling content, to give students the confidence that the mathematical skills, knowledge and understanding that they will have acquired during the course of their study are as good as that of the highest performing jurisdictions in the world
- provide a strong foundation for further academic and vocational study and for employment, to give students the appropriate mathematical skills, knowledge and understanding to help them progress to a full range of courses in further and higher education. This includes Level 3 mathematics courses as well as Level 3 and undergraduate courses in other disciplines such as biology, geography and psychology, where the understanding and application of mathematics is crucial
- provide (if required) a basis for schools and colleges to be held accountable for the performance of all of their students.

Qualification aims and objectives

The aims and objectives of the Pearson Edexcel Level 1/Level 2 GCSE (9–1) in Mathematics are to enable students to:

- develop fluent knowledge, skills and understanding of mathematical methods and concepts
- acquire, select and apply mathematical techniques to solve problems
- reason mathematically, make deductions and inferences, and draw conclusions
- comprehend, interpret and communicate mathematical information in a variety of forms appropriate to the information and context.

The context for the development of this qualification

All our qualifications are designed to meet our World Class Qualification Principles^[1] and our ambition to put the student at the heart of everything we do.

We have developed and designed this qualification by:

- reviewing other curricula and qualifications to ensure that it is comparable with those taken in high-performing jurisdictions overseas
- consulting with key stakeholders on content and assessment, including learned bodies, subject associations, higher-education academics, teachers and employers to ensure this qualification is suitable for a UK context
- reviewing the legacy qualification and building on its positive attributes.

This qualification has also been developed to meet criteria stipulated by Ofqual in their documents *GCSE (9 to 1) Qualification Level Conditions and Requirements* and *GCSE Subject Level Conditions and Requirements for Mathematics*, published in April 2014.

- **rigorous**, through setting and maintaining standards over time, developing reliable and valid assessment tasks and processes, and generating confidence in end users of the knowledge, skills and competencies of certified students
- **inclusive**, through conceptualising learning as continuous, recognising that students develop at different rates and have different learning needs, and focusing on progression
- **empowering**, through promoting the development of transferable skills, see *Appendix 1*.

^[1] Pearson's World Class Qualification principles ensure that our qualifications are:

[•] **demanding**, through internationally benchmarked standards, encouraging deep learning and measuring higher-order skills

Contents

Qualification at a glance	1
Knowledge, skills and understanding	3
Foundation tier knowledge, skills and understanding	5
Higher tier knowledge, skills and understanding	12
Assessment	21
Assessment summary	21
Assessment Objectives and weightings	24
Breakdown of Assessment Objectives into strands and elements	26
Entry and assessment information	28
Student entry	28
Forbidden combinations and discount code	28
November resits	28
Access arrangements, reasonable adjustments and special consideration	29
Equality Act 2010 and Pearson equality policy	30
Awarding and reporting	31
Language of assessment	31
Grade descriptions	31
Other information	33
Student recruitment	33
Prior learning	33
Progression	33
Progression from GCSE	34
Appendix 1: Transferable skills	37
Appendix 2: Codes	39
Appendix 3: Mathematical formulae	41

Qualification at a glance

Pearson Edexcel Level 1/Level 2 GCSE (9–1) in Mathematics

- The assessments will cover the following content headings:
 - 1 Number
 - 2 Algebra
 - 3 Ratio, proportion and rates of change
 - 4 Geometry and measures
 - 5 Probability
 - 6 Statistics
- Two tiers are available: Foundation and Higher (content is defined for each tier).
- Each student is permitted to take assessments in either the Foundation tier or Higher tier.
- The qualification consists of three equally-weighted written examination papers at either Foundation tier or Higher tier.
- All three papers must be at the same tier of entry and must be completed in the same assessment series.
- Paper 1 is a non-calculator assessment and a calculator is allowed for Paper 2 and Paper 3.
- Each paper is 1 hour and 30 minutes long.
- Each paper has 80 marks.
- The content outlined for each tier will be assessed across all three papers.
- Each paper will cover all Assessment Objectives, in the percentages outlined for each tier. (See the section *Breakdown of Assessment Objectives* for more information.)
- Each paper has a range of question types; some questions will be set in both mathematical and non-mathematical contexts.
- See *Appendix 3* for a list of formulae that can be provided in the examination (as part of the relevant question).
- Two assessment series available per year: May/June and November*.
- First assessment series: May/June 2017.
- The qualification will be graded and certificated on a nine-grade scale from 9 to 1 using the total mark across all three papers where 9 is the highest grade. Individual papers are not graded.
- Foundation tier: grades 1 to 5.
- Higher tier: grades 4 to 9 (grade 3 allowed).

*See the *November resits* section for restrictions on November entry.

Knowledge, skills and understanding

Overview

The table below illustrates the topic areas covered in this qualification and the topic area weightings for the assessment of the Foundation tier and the assessment of the Higher tier.

Tier	Topic area	Weighting
Foundation	Number	22 - 28%
	Algebra	17 - 23%
	Ratio, Proportion and Rates of change	22 - 28%
	Geometry and Measures	12 - 18%
	Statistics & Probability	12 - 18%
Higher	Number	12 - 18%
	Algebra	27 - 33%
	Ratio, Proportion and Rates of change	17 - 23%
	Geometry and Measures	17 - 23%
	Statistics & Probability	12 - 18%

Content

- All students will develop confidence and competence with the content identified by standard type.
- All students will be assessed on the content identified by the standard and the <u>underlined</u> type; more highly attaining students will develop confidence and competence with all of this content.
- Only the more highly attaining students will be assessed on the content identified by **bold** type. The highest attaining students will develop confidence and competence with the bold content.
- The distinction between standard, <u>underlined</u> and **bold** type applies to the content statements only, not to the Assessment Objectives or to the mathematical formulae.

Foundation tier

Foundation tier students will be assessed on content identified by the standard and <u>underlined</u> type. Foundation tier students will **not** be assessed on content identified by **bold** type. Foundation tier content is on *pages 3–9*.

Higher tier

Higher tier students will be assessed on **all** the content which is identified by the standard, <u>underlined</u> and **bold** type. Higher tier content is on *pages 10–18*.

Foundation tier knowledge, skills and understanding

1. Number

Structure and calculation

What students need to learn:

- **N1** order positive and negative integers, decimals and fractions; use the symbols =, \neq , <, >, \leq , \geq
- apply the four operations, including formal written methods, to integers, decimals and simple fractions (proper and improper), and mixed numbers all both positive and negative; understand and use place value (e.g. when working with very large or very small numbers, and when calculating with decimals)
- N3 recognise and use relationships between operations, including inverse operations (e.g. cancellation to simplify calculations and expressions); use conventional notation for priority of operations, including brackets, powers, roots and reciprocals
- N4 use the concepts and vocabulary of prime numbers, factors (divisors), multiples, common factors, common multiples, highest common factor, lowest common multiple, prime factorisation, including using product notation and the unique factorisation theorem
- N5 apply systematic listing strategies
- **N6** use positive integer powers and associated real roots (square, cube and higher), recognise powers of 2, 3, 4, 5
- N7 calculate with roots, and with integer indices
- **N8** calculate exactly with fractions <u>and multiples of π </u>
- **N9** calculate with and interpret standard form $A \times 10^{n}$, where $1 \le A < 10$ and *n* is an integer

Fractions, decimals and percentages

- **N10** work interchangeably with terminating decimals and their corresponding fractions (such as 3.5 and $\frac{7}{2}$ or 0.375 or $\frac{3}{8}$)
- **N11** identify and work with fractions in ratio problems
- **N12** interpret fractions and percentages as operators

Measures and accuracy

What students need to learn:

- **N13** use standard units of mass, length, time, money and other measures (including standard compound measures) using decimal quantities where appropriate
- **N14** estimate answers; check calculations using approximation and estimation, including answers obtained using technology
- N15 round numbers and measures to an appropriate degree of accuracy (e.g. to a specified number of decimal places or significant figures); use inequality notation to specify simple error intervals due to truncation or rounding
- **N16** apply and interpret limits of accuracy

2. Algebra

Notation, vocabulary and manipulation

- **A1** use and interpret algebraic manipulation, including:
 - ab in place of $a \times b$
 - 3y in place of y + y + y and $3 \times y$
 - a^2 in place of $a \times a$, a^3 in place of $a \times a \times a$, a^2b in place of $a \times a \times b$
 - $\frac{a}{b}$ in place of $a \div b$
 - coefficients written as fractions rather than as decimals
 - brackets
- A2 substitute numerical values into formulae and expressions, including scientific formulae
- **A3** understand and use the concepts and vocabulary of expressions, equations, formulae, <u>identities</u>, inequalities, terms and factors
- A4 simplify and manipulate algebraic expressions (<u>including those involving</u> <u>surds</u>) by:
 - collecting like terms
 - multiplying a single term over a bracket
 - taking out common factors
 - <u>expanding products of two binomials</u>
 - factorising quadratic expressions of the form $x^2 + bx + c$, including the difference of two squares;
 - simplifying expressions involving sums, products and powers, including the laws of indices

- **A5** understand and use standard mathematical formulae; rearrange formulae to change the subject
- A6 <u>know the difference between an equation and an identity; argue</u> <u>mathematically to show algebraic expressions are equivalent, and use</u> <u>algebra to support and construct arguments</u>
- **A7** where appropriate, interpret simple expressions as functions with inputs and outputs.

Graphs

What students need to learn:

- **A8** work with coordinates in all four quadrants
- **A9** plot graphs of equations that correspond to straight-line graphs in the coordinate plane; use the form y = mx + c to identify parallel lines; find the equation of the line through two given points or through one point with a given gradient
- A10 identify and interpret gradients and intercepts of linear functions graphically and algebraically
- A11 <u>identify and interpret roots, intercepts, turning points of quadratic functions</u> <u>graphically; deduce roots algebraically</u>
- **A12** recognise, sketch and interpret graphs of linear functions, quadratic functions, simple cubic functions, the reciprocal function $y = \frac{1}{x}$ with $x \neq 0$
- A14 plot and interpret graphs (<u>including reciprocal graphs</u>) and graphs of non-standard functions in real contexts to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration

Solving equations and inequalities

- A17 solve linear equations in one unknown algebraically (including those with the unknown on both sides of the equation); find approximate solutions using a graph
- A18 <u>solve quadratic equations algebraically by factorising; find approximate</u> <u>solutions using a graph</u>
- A19 <u>solve two simultaneous equations in two variables (linear/linear</u> <u>algebraically; find approximate solutions using a graph</u>
- A21 <u>translate simple situations or procedures into algebraic expressions or</u> <u>formulae; derive an equation (or two simultaneous equations), solve the</u> <u>equation(s) and interpret the solution</u>
- A22 <u>solve linear inequalities in one variable; represent the solution set on a</u> <u>number line</u>

Sequences

What students need to learn:

- **A23** generate terms of a sequence from either a term-to-term or a position-to-term rule
- **A24** recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions, <u>Fibonacci type sequences</u>, <u>quadratic</u> <u>sequences</u>, <u>and simple geometric progressions</u> (r^n where *n* is an integer, and *r* is a rational number > 0)
- **A25** deduce expressions to calculate the *n*th term of linear sequences

3. Ratio, proportion and rates of change

- **R1** change freely between related standard units (e.g. time, length, area, volume/capacity, mass) and compound units (e.g. speed, rates of pay, prices, <u>density</u>, pressure) in numerical <u>and algebraic</u> contexts
- **R2** use scale factors, scale diagrams and maps
- **R3** express one quantity as a fraction of another, where the fraction is less than 1 or greater than 1
- **R4** use ratio notation, including reduction to simplest form
- **R5** divide a given quantity into two parts in a given part:part or part:whole ratio; express the division of a quantity into two parts as a ratio; apply ratio to real contexts and problems (such as those involving conversion, comparison, scaling, mixing, concentrations)
- **R6** express a multiplicative relationship between two quantities as a ratio or a fraction
- **R7** understand and use proportion as equality of ratios
- **R8** relate ratios to fractions and to linear functions
- **R9** define percentage as 'number of parts per hundred'; interpret percentages and percentage changes as a fraction or a decimal, and interpret these multiplicatively; express one quantity as a percentage of another; compare two quantities using percentages; work with percentages greater than 100%; solve problems involving percentage change, including percentage increase/decrease and original value problems, and simple interest including in financial mathematics
- **R10** solve problems involving direct and inverse proportion, including graphical and algebraic representations
- **R11** use compound units such as speed, rates of pay, unit pricing, <u>density and</u> <u>pressure</u>
- **R12** compare lengths, areas and volumes using ratio notation; <u>make links to</u> <u>similarity (including trigonometric ratios)</u> and scale factors

- **R13** <u>understand that *X* is inversely proportional to *Y* is equivalent to *X* is proportional to $\frac{1}{Y}$; interpret equations that describe direct and inverse proportion</u>
- **R14** interpret the gradient of a straight line graph as a rate of change; recognise and interpret graphs that illustrate direct and inverse proportion
- **R16** <u>set up, solve and interpret the answers in growth and decay problems,</u> <u>including compound interest</u>

4. Geometry and measures

Properties and constructions

- **G1** use conventional terms and notation: points, lines, vertices, edges, planes, parallel lines, perpendicular lines, right angles, polygons, regular polygons and polygons with reflection and/or rotation symmetries; use the standard conventions for labelling and referring to the sides and angles of triangles; draw diagrams from written description
- **G2** <u>use the standard ruler and compass constructions (perpendicular bisector of a line segment, constructing a perpendicular to a given line from/at a given point, bisecting a given angle); use these to construct given figures and solve loci problems; know that the perpendicular distance from a point to a line is the shortest distance to the line</u>
- **G3** apply the properties of angles at a point, angles at a point on a straight line, vertically opposite angles; understand and use alternate and corresponding angles on parallel lines; derive and use the sum of angles in a triangle (e.g. to deduce and use the angle sum in any polygon, and to derive properties of regular polygons)
- **G4** derive and apply the properties and definitions of special types of quadrilaterals, including square, rectangle, parallelogram, trapezium, kite and rhombus; and triangles and other plane figures using appropriate language
- **G5** <u>use the basic congruence criteria for triangles (SSS, SAS, ASA, RHS)</u>
- G6 apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides, including Pythagoras' theorem and the fact that the base angles of an isosceles triangle are equal, and use known results to obtain simple proofs
- **G7** identify, describe and construct congruent and similar shapes, including on coordinate axes, by considering rotation, reflection, translation and enlargement (including fractional scale factors)
- **G9** identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference, <u>tangent, arc, sector and segment</u>

- G11 solve geometrical problems on coordinate axes
- **G12** identify properties of the faces, surfaces, edges and vertices of: cubes, cuboids, prisms, cylinders, pyramids, cones and spheres
- **G13** <u>construct</u> and interpret plans and elevations of 3D shapes

Mensuration and calculation

What students need to learn:

- **G14** use standard units of measure and related concepts (length, area, volume/capacity, mass, time, money, etc.)
- **G15** measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings
- **G16** know and apply formulae to calculate: area of triangles, parallelograms, trapezia; volume of cuboids and other right prisms (including cylinders)
- **G17** know the formulae: circumference of a circle $= 2\pi r = \pi d$, area of a circle $= \pi r^2$; calculate: perimeters of 2D shapes, including circles; areas of circles and composite shapes; <u>surface area and volume of spheres</u>, <u>pyramids</u>, <u>cones and composite solids</u>
- G18 calculate arc lengths, angles and areas of sectors of circles
- **G19** apply the concepts of congruence and similarity, including the relationships between lengths, in similar figures
- **G20** <u>know the formulae for: Pythagoras' theorem $a^2 + b^2 = c^2$, and the trigonometric ratios, $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$, $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$ </u>

 $\frac{\text{and } \tan \theta}{\text{adjacent}} = \frac{\text{opposite}}{\text{adjacent}}$; apply them to find angles and lengths in

```
right-angled triangles in two-dimensional figures
```

G21 know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta = 0^{\circ}$, 30° , 45° , 60° and 90° ; know the exact value of $\tan \theta$ for $\theta = 0^{\circ}$, 30° , 45° and 60°

Vectors

- **G24** describe translations as 2D vectors
- **G25** <u>apply addition and subtraction of vectors, multiplication of vectors by a</u> <u>scalar, and diagrammatic and column representations of vectors</u>

5. Probability

What students need to learn:

- **P1** record, describe and analyse the frequency of outcomes of probability experiments using tables and frequency trees
- **P2** apply ideas of randomness, fairness and equally likely events to calculate expected outcomes of multiple future experiments
- **P3** relate relative expected frequencies to theoretical probability, using appropriate language and the 0-1 probability scale
- **P4** apply the property that the probabilities of an exhaustive set of outcomes sum to one; apply the property that the probabilities of an exhaustive set of mutually exclusive events sum to one
- **P5** <u>understand that empirical unbiased samples tend towards theoretical</u> probability distributions, with increasing sample size
- **P6** enumerate sets and combinations of sets systematically, using tables, grids, Venn diagrams <u>and tree diagrams</u>
- **P7** construct theoretical possibility spaces for single and combined experiments with equally likely outcomes and use these to calculate theoretical probabilities
- **P8** <u>calculate the probability of independent and dependent combined events,</u> <u>including using tree diagrams and other representations, and know the</u> <u>underlying assumptions</u>

6. Statistics

- **S1** <u>infer properties of populations or distributions from a sample, while knowing</u> <u>the limitations of sampling</u>
- **S2** interpret and construct tables, charts and diagrams, including frequency tables, bar charts, pie charts and pictograms for categorical data, vertical line charts for ungrouped discrete numerical data, <u>tables and line graphs for time series data</u> and know their appropriate use
- **S4** interpret, analyse and compare the distributions of data sets from univariate empirical distributions through:
 - appropriate graphical representation involving discrete, continuous and grouped data
 - appropriate measures of central tendency (median, mean, mode and modal class) and spread (range, including consideration of outliers)
- **S5** apply statistics to describe a population
- **S6** use and interpret scatter graphs of bivariate data; recognise correlation <u>and</u> <u>know that it does not indicate causation; draw estimated lines of best fit;</u> <u>make predictions; interpolate and extrapolate apparent trends while</u> <u>knowing the dangers of so doing</u>

Higher tier knowledge, skills and understanding

1. Number

Structure and calculation

- **N1** order positive and negative integers, decimals and fractions; use the symbols =, \neq , <, >, \leq , \geq
- N2 apply the four operations, including formal written methods, to integers, decimals and simple fractions (proper and improper), and mixed numbers all both positive and negative; understand and use place value (e.g. when working with very large or very small numbers, and when calculating with decimals)
- **N3** recognise and use relationships between operations, including inverse operations (e.g. cancellation to simplify calculations and expressions); use conventional notation for priority of operations, including brackets, powers, roots and reciprocals
- **N4** use the concepts and vocabulary of prime numbers, factors (divisors), multiples, common factors, common multiples, highest common factor, lowest common multiple, prime factorisation, including using product notation and the unique factorisation theorem
- N5 apply systematic listing strategies, including use of the product rule for counting (i.e. if there are m ways of doing one task and for each of these, there are n ways of doing another task, then the total number of ways the two tasks can be done is $m \times n$ ways)
- N6 use positive integer powers and associated real roots (square, cube and higher), recognise powers of 2, 3, 4, 5; estimate powers and roots of any given positive number
- N7 <u>calculate with roots, and with integer</u> and fractional indices
- N8 calculate exactly with fractions, surds and multiples of π ; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) and rationalise denominators
- **N9** calculate with and interpret standard form $A \times 10^{n}$, where $1 \le A < 10$ and *n* is an integer

Fractions, decimals and percentages

What students need to learn:

N10 work interchangeably with terminating decimals and their corresponding fractions (such as 3.5 and $\frac{7}{2}$ or 0.375 or $\frac{3}{8}$); change recurring decimals

into their corresponding fractions and vice versa

- N11 identify and work with fractions in ratio problems
- **N12** interpret fractions and percentages as operators

Measures and accuracy

What students need to learn:

- **N13** use standard units of mass, length, time, money and other measures (including standard compound measures) using decimal quantities where appropriate
- **N14** estimate answers; check calculations using approximation and estimation, including answers obtained using technology
- N15 round numbers and measures to an appropriate degree of accuracy (e.g. to a specified number of decimal places or significant figures); use inequality notation to specify simple error intervals due to truncation or rounding
- N16 apply and interpret limits of accuracy, including upper and lower bounds

2. Algebra

Notation, vocabulary and manipulation

- **A1** use and interpret algebraic manipulation, including:
 - ab in place of $a \times b$
 - 3y in place of y + y + y and $3 \times y$
 - a^2 in place of $a \times a$, a^3 in place of $a \times a \times a$, a^2b in place of $a \times a \times b$
 - $\frac{a}{b}$ in place of $a \div b$
 - coefficients written as fractions rather than as decimals
 - brackets
- A2 substitute numerical values into formulae and expressions, including scientific formulae
- A3 understand and use the concepts and vocabulary of expressions, equations, formulae, <u>identities</u>, inequalities, terms and factors

- A4 simplify and manipulate algebraic expressions (<u>including those involving</u> <u>surds</u> and algebraic fractions) by:
 - collecting like terms
 - multiplying a single term over a bracket
 - taking out common factors
 - <u>expanding products of two</u> or more <u>binomials</u>
 - <u>factorising quadratic expressions of the form $x^2 + bx + c$, including the</u> <u>difference of two squares;</u> factorising quadratic expressions of the form $ax^2 + bx + c$
 - simplifying expressions involving sums, products and powers, including the laws of indices
- **A5** understand and use standard mathematical formulae; rearrange formulae to change the subject
- A6 <u>know the difference between an equation and an identity; argue</u> <u>mathematically to show algebraic expressions are equivalent, and use</u> <u>algebra to support and construct arguments</u> **and proofs**
- A7 where appropriate, interpret simple expressions as functions with inputs and outputs; interpret the reverse process as the 'inverse function'; interpret the succession of two functions as a 'composite function' (the use of formal function notation is expected)

Graphs

What students need to learn:

- **A8** work with coordinates in all four quadrants
- **A9** plot graphs of equations that correspond to straight-line graphs in the coordinate plane; use the form y = mx + c to identify parallel **and perpendicular lines**; find the equation of the line through two given points or through one point with a given gradient
- A10 identify and interpret gradients and intercepts of linear functions graphically and algebraically
- A11 <u>identify and interpret roots, intercepts, turning points of quadratic functions</u> <u>graphically; deduce roots algebraically</u> and turning points by completing the square
- A12 recognise, sketch and interpret graphs of linear functions, quadratic

functions, simple cubic functions, the reciprocal function $y = \frac{1}{x \neq 0}$,

exponential functions $y = k^x$ for positive values of k, and the trigonometric functions (with arguments in degrees) $y = \sin x$, $y = \cos x$ and $y = \tan x$ for angles of any size

A13 sketch translations and reflections of a given function

- A14 plot and interpret graphs (<u>including reciprocal graphs</u> and exponential graphs) and graphs of non-standard functions in real contexts to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration
- A15 calculate or estimate gradients of graphs and areas under graphs (including quadratic and other non-linear graphs), and interpret results in cases such as distance-time graphs, velocity-time graphs and graphs in financial contexts (this does not include calculus)
- A16 recognise and use the equation of a circle with centre at the origin; find the equation of a tangent to a circle at a given point

Solving equations and inequalities

What students need to learn:

- A17 solve linear equations in one unknown algebraically (including those with the unknown on both sides of the equation); find approximate solutions using a graph
- A18 <u>solve quadratic equations</u> (including those that require rearrangement) <u>algebraically by factorising</u>, by completing the square and by using the quadratic formula; <u>find approximate solutions using a graph</u>
- A19 <u>solve two simultaneous equations in two variables (linear/linear or</u> linear/quadratic) <u>algebraically</u>; <u>find approximate solutions using a graph</u>
- A20 find approximate solutions to equations numerically using iteration
- A21 <u>translate simple situations or procedures into algebraic expressions or</u> <u>formulae; derive an equation (or two simultaneous equations), solve the</u> <u>equation(s) and interpret the solution</u>
- A22 <u>solve linear inequalities in one</u> or two <u>variable</u>(s), and quadratic inequalities in one variable; <u>represent the solution set on a number line</u>, using set notation and on a graph

Sequences

- **A23** generate terms of a sequence from either a term-to-term or a position-to-term rule
- **A24** recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions, <u>Fibonacci type sequences</u>, <u>quadratic sequences</u>, and <u>simple geometric progressions</u> (r^n where n is an integer, and r is a rational <u>number > 0</u> or a surd) and other sequences
- A25 deduce expressions to calculate the *n*th term of linear **and quadratic** sequences

3. Ratio, proportion and rates of change

What students need to learn:

- **R1** change freely between related standard units (e.g. time, length, area, volume/capacity, mass) and compound units (e.g. speed, rates of pay, prices, <u>density</u>, pressure) in numerical <u>and algebraic</u> contexts
- **R2** use scale factors, scale diagrams and maps
- **R3** express one quantity as a fraction of another, where the fraction is less than 1 or greater than 1
- **R4** use ratio notation, including reduction to simplest form
- **R5** divide a given quantity into two parts in a given part:part or part:whole ratio; express the division of a quantity into two parts as a ratio; apply ratio to real contexts and problems (such as those involving conversion, comparison, scaling, mixing, concentrations)
- **R6** express a multiplicative relationship between two quantities as a ratio or a fraction
- **R7** understand and use proportion as equality of ratios
- **R8** relate ratios to fractions and to linear functions
- **R9** define percentage as 'number of parts per hundred'; interpret percentages and percentage changes as a fraction or a decimal, and interpret these multiplicatively; express one quantity as a percentage of another; compare two quantities using percentages; work with percentages greater than 100%; solve problems involving percentage change, including percentage increase/decrease and original value problems, and simple interest including in financial mathematics
- **R10** solve problems involving direct and inverse proportion, including graphical and algebraic representations
- **R11** use compound units such as speed, rates of pay, unit pricing, <u>density and</u> <u>pressure</u>
- **R12** compare lengths, areas and volumes using ratio notation; <u>make links to</u> <u>similarity (including trigonometric ratios)</u> and scale factors
- **R13** <u>understand that X is inversely proportional to Y is equivalent to X is</u> proportional to $\frac{1}{Y}$; **construct and** interpret equations that describe direct

and inverse proportion

- **R14** interpret the gradient of a straight line graph as a rate of change; recognise and interpret graphs that illustrate direct and inverse proportion
- R15 interpret the gradient at a point on a curve as the instantaneous rate of change; apply the concepts of average and instantaneous rate of change (gradients of chords and tangents) in numerical, algebraic and graphical contexts (this does not include calculus)
- **R16** <u>set up, solve and interpret the answers in growth and decay problems,</u> <u>including compound interest</u> **and work with general iterative processes**

4. Geometry and measures

Properties and constructions

- **G1** use conventional terms and notations: points, lines, vertices, edges, planes, parallel lines, perpendicular lines, right angles, polygons, regular polygons and polygons with reflection and/or rotation symmetries; use the standard conventions for labelling and referring to the sides and angles of triangles; draw diagrams from written description
- **G2** <u>use the standard ruler and compass constructions (perpendicular bisector of a line segment, constructing a perpendicular to a given line from/at a given point, bisecting a given angle); use these to construct given figures and solve loci problems; know that the perpendicular distance from a point to a line is the shortest distance to the line</u>
- **G3** apply the properties of angles at a point, angles at a point on a straight line, vertically opposite angles; understand and use alternate and corresponding angles on parallel lines; derive and use the sum of angles in a triangle (e.g. to deduce and use the angle sum in any polygon, and to derive properties of regular polygons)
- **G4** derive and apply the properties and definitions of: special types of quadrilaterals, including square, rectangle, parallelogram, trapezium, kite and rhombus; and triangles and other plane figures using appropriate language
- **G5** <u>use the basic congruence criteria for triangles (SSS, SAS, ASA, RHS)</u>
- G6 apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides, including Pythagoras' theorem and the fact that the base angles of an isosceles triangle are equal, and use known results to obtain simple proofs
- **G7** identify, describe and construct congruent and similar shapes, including on coordinate axes, by considering rotation, reflection, translation and enlargement (<u>including fractional</u> **and negative** <u>scale factors</u>)
- G8 describe the changes and invariance achieved by combinations of rotations, reflections and translations
- **G9** identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference, <u>tangent, arc, sector and segment</u>
- G10 apply and prove the standard circle theorems concerning angles, radii, tangents and chords, and use them to prove related results
- **G11** solve geometrical problems on coordinate axes
- **G12** identify properties of the faces, surfaces, edges and vertices of: cubes, cuboids, prisms, cylinders, pyramids, cones and spheres
- **G13** <u>construct and</u> interpret plans and elevations of 3D shapes

Mensuration and calculation

What students need to learn:

- **G14** use standard units of measure and related concepts (length, area, volume/capacity, mass, time, money, etc.)
- **G15** measure line segments and angles in geometric figures, including interpreting maps and scale drawings and use of bearings
- **G16** know and apply formulae to calculate: area of triangles, parallelograms, trapezia; volume of cuboids and other right prisms (including cylinders)
- **G17** know the formulae: circumference of a circle = $2\pi r = \pi d$, area of a circle = πr^2 ; calculate: perimeters of 2D shapes, including circles; areas of circles and composite shapes; <u>surface area and volume of spheres</u>, <u>pyramids</u>, <u>cones and composite solids</u>
- G18 calculate arc lengths, angles and areas of sectors of circles
- **G19** apply the concepts of congruence and similarity, including the relationships between lengths, areas and volumes in similar figures

G20 know the formulae for: Pythagoras' theorem
$$a^2 + b^2 = c^2$$
, and the
trigonometric ratios, $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$, $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$ and

 $\underline{\tan \theta} = \frac{\text{opposite}}{\text{adjacent}}$; apply them to find angles and lengths in right-angled

triangles and, where possible, general triangles in two and three dimensional figures

- **G21** know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta = 0^{\circ}$, 30° , 45° , 60° and 90° ; know the exact value of $\tan \theta$ for $\theta = 0^{\circ}$, 30° , 45° and 60°
- G22 know and apply the sine rule $\frac{a}{sin A} = \frac{b}{sin B} = \frac{c}{sin C}$, and cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$, to find unknown lengths and angles
- G23 know and apply Area = $\frac{1}{2}ab\sin C$ to calculate the area, sides or angles of any triangle

Vectors

- **G24** describe translations as 2D vectors
- G25 <u>apply addition and subtraction of vectors, multiplication of vectors by a</u> <u>scalar, and diagrammatic and column representations of vectors;</u> use vectors to construct geometric arguments and proofs

5. Probability

- **P1** record, describe and analyse the frequency of outcomes of probability experiments using tables and frequency trees
- **P2** apply ideas of randomness, fairness and equally likely events to calculate expected outcomes of multiple future experiments
- **P3** relate relative expected frequencies to theoretical probability, using appropriate language and the 0-1 probability scale
- **P4** apply the property that the probabilities of an exhaustive set of outcomes sum to one; apply the property that the probabilities of an exhaustive set of mutually exclusive events sum to one
- **P5** <u>understand that empirical unbiased samples tend towards theoretical</u> probability distributions, with increasing sample size
- **P6** enumerate sets and combinations of sets systematically, using tables, grids, Venn diagrams <u>and tree diagrams</u>
- **P7** construct theoretical possibility spaces for single and combined experiments with equally likely outcomes and use these to calculate theoretical probabilities
- **P8** <u>calculate the probability of independent and dependent combined events,</u> <u>including using tree diagrams and other representations, and know the</u> <u>underlying assumptions</u>
- P9 calculate and interpret conditional probabilities through representation using expected frequencies with two-way tables, tree diagrams and Venn diagrams

6. Statistics

- **S1** <u>infer properties of populations or distributions from a sample, while knowing</u> <u>the limitations of sampling</u>
- **S2** interpret and construct tables, charts and diagrams, including frequency tables, bar charts, pie charts and pictograms for categorical data, vertical line charts for ungrouped discrete numerical data, <u>tables and line graphs for time series data</u> and know their appropriate use
- S3 construct and interpret diagrams for grouped discrete data and continuous data, i.e. histograms with equal and unequal class intervals and cumulative frequency graphs, and know their appropriate use
- **S4** interpret, analyse and compare the distributions of data sets from univariate empirical distributions through:
 - appropriate graphical representation involving discrete, continuous and grouped data, **including box plots**
 - appropriate measures of central tendency (median, mean, mode and modal class) and spread (range, including consideration of outliers, quartiles and inter-quartile range)
- **S5** apply statistics to describe a population
- **S6** use and interpret scatter graphs of bivariate data; recognise correlation <u>and</u> <u>know that it does not indicate causation; draw estimated lines of best fit;</u> <u>make predictions; interpolate and extrapolate apparent trends while</u> <u>knowing the dangers of so doing</u>

Assessment

Assessment summary

The Pearson Edexcel Level 1/Level 2 GCSE (9 to 1) in Mathematics is a tiered qualification. There are two tiers:

- Foundation tier grades 1 to 5 available
- Higher tier grades 4 to 9 available (grade 3 allowed).

The assessment for each tier of entry consists of three externally-examined papers, all three must be from the same tier of entry. Students must complete all three papers in the same assessment series.

Summary of table of assessment

Ра	ber 1 *Paper code: 1MA1/1F or 1MA1/1H			
•	Externally assessed			
•	Availability: May/June and November	**	33.33% of the	
•	First assessment: May/June 2017			
Οv	Overview of content			
1.	Number			
2.	Algebra			
3.	Ratio, proportion and rates of change			
4.	Geometry and measures			
5.	Probability			
6.	Statistics			
Οv	erview of assessment			
•	Written examination papers with a ra	nge of question types		
•	No calculator is allowed			
•	1 hour and 30 minutes (both Foundat	ion and Higher tier paper	rs)	
•	80 marks available			

The sample assessment materials can be found in the *Pearson Edexcel Level 1/ Level 2 GCSE (9–1) in Mathematics Sample Assessment Materials* document.

*See *Appendix 2: Codes* for a description of this code and all other codes relevant to this qualification.

**See the *November resits* section for restrictions on November entry.

Paper 2 *Paper code: 1MA1/2F or 1MA1/2H			
Externally assessed			
Availability: May/June and Novembe	r**	33.33% of the	
• First assessment: May/June 2017			
Overview of content			
1. Number			
2. Algebra			
3. Ratio, proportion and rates of change	e		
4. Geometry and measures			
5. Probability			
6. Statistics			
Overview of assessment			
• Written examination papers with a ra	ange of question types		
Calculator allowed			
• 1 hour and 30 minutes (both Founda	ition and Higher tier pape	rs)	
• 80 marks available			
*****	C (1) C (1		

*See *Appendix 2: Codes* for a description of this code and all other codes relevant to this qualification.

**See the *November resits* section for restrictions on November entry.

Paper 3	Paper 3 *Paper code: 1MA1/3F or 1MA1/3H		
• Externall	y assessed		
Availabili	ty: May/June and November	-**	33.33% of the
First asse	essment: May/June 2017		
Overview of content			
1. Number			
2. Algebra			
3. Ratio, pro	portion and rates of change	:	
4. Geometry	and measures		
5. Probabilit	ÿ		
6. Statistics			
Overview of	assessment		
• Written e	xamination papers with a ra	nge of question types	
Calculato	r allowed		
1 hour ar	nd 30 minutes (both Foundat	tion and Higher tier paper	rs)
• 80 marks	available		
*0 4		6	

*See *Appendix 2: Codes* for a description of this code and all other codes relevant to this qualification.

**See the *November resits* section for restrictions on November entry.
Assessment Objectives and weightings

		% Foundation	% Higher
A01	Use and apply standard techniques		
	Students should be able to:		
	 accurately recall facts, terminology and definitions 	50	40
	 use and interpret notation correctly 		
	• accurately carry out routine procedures or set tasks requiring multi-step solutions.		
AO2	Reason, interpret and communicate mathematically		
	Students should be able to:		
	 make deductions, inferences and draw conclusions from mathematical information 		
	 construct chains of reasoning to achieve a given result 		
	 interpret and communicate information accurately 	25	30
	 present arguments and proofs 		
	 assess the validity of an argument and critically evaluate a given way of presenting information. 		
	Where problems require students to 'use and apply standard techniques' or to independently 'solve problems' a proportion of those marks should be attributed to the corresponding Assessment Objective.		

		% Foundation	% Higher
AO3	Solve problems within mathematics and in other contexts		
	Students should be able to:		
	 translate problems in mathematical or non- mathematical contexts into a process or a series of mathematical processes 		
	 make and use connections between different parts of mathematics 		
	 interpret results in the context of the given problem 	25	30
	 evaluate methods used and results obtained 		
	 evaluate solutions to identify how they may have been affected by assumptions made. 		
	Where problems require students to 'use and apply standard techniques' or to 'reason, interpret and communicate mathematically' a proportion of those marks should be attributed to the corresponding Assessment Objective.		
	Total	100%	100%

Breakdown of Assessment Objectives into strands and elements

The strands and elements shown below will be assessed in every examination series, the marks allocated to these strands and elements are shown in the mark schemes.

AO1 Use and apply standard techn	iques
Strands	Elements
1 – Accurately recall facts,	1 – accurately recall facts, terminology and definitions
terminology and demittions	Should be no more than 10% of AO1
2 – Use and interpret notation correctly	2 – use and interpret notation correctly
3 – Accurately carry out routine	3a – accurately carry out routine procedures
procedures or set tasks requiring multi-step solutions	3b – accurately carry out set tasks requiring multi-step solutions
AO2 Reason, interpret and commu	inicate mathematically
Strands	Elements
1 – Make deductions, inferences and	1a – make deductions to draw conclusions from mathematical information
information	1b – make inferences to draw conclusions from mathematical information
2 – Construct chains of reasoning to achieve a given result	2 – construct chains of reasoning to achieve a given result
3 – Interpret and communicate	3a – interpret information accurately
information accurately	3b – communicate information accurately
4 Drecent excuments and press	4a – present arguments
4 – Present arguments and proofs	4b - present proofs (higher tier only)
5 - Assess the validity of an	5a – assess the validity of an argument
argument and critically evaluate a given way of presenting information	5b – critically evaluate a given way of presenting information

AO3 Solve problems within mathe	matics and in other contexts
Strands	Elements
	1a – translate problems in mathematical contexts into a process
1 – Translate problems in	1b – translate problems in mathematical contexts into a series of processes
contexts into a process or a series of mathematical processes	1c – translate problems in non-mathematical contexts into a mathematical process
	1d – translate problems in non-mathematical contexts into a series of mathematical processes
2 – Make and use connections between different parts of mathematics	2 – make and use connections between different parts of mathematics
3 – Interpret results in the context of the given problem	<i>3 – interpret results in the context of the given problem</i>
4 – Evaluate methods used and	4a – evaluate methods used
results obtained	4b – evaluate results obtained
5 – Evaluate solutions to identify how they may have been affected by assumptions made	5 – evaluate solutions to identify how they may have been affected by assumptions made

Student entry

Details of how to enter students for the examinations for this qualification can be found in our *UK Information Manual*. A copy is made available to all examinations officers and is available on our website at: www.edexcel.com/iwantto/Pages/uk-informationmanual.aspx

Forbidden combinations and discount code

There are two tiers of entry available. Each student is permitted to take assessments in either the Foundation tier or Higher tier. All three papers must be from the same tier of entry and must be completed in the same assessment series.

Centres should be aware that students who enter for more than one GCSE or other Level 2 qualifications with the same discount code will have only the grade for their 'first entry' counted for the purpose of the School and College Performance Tables (please see *Appendix 2: Codes*). For further information about what constitutes 'first entry' and full details of how this policy is applied, please refer to the DfE website: www.education.gov.uk

Students should be advised that, if they take two GCSEs with the same discount code, schools and colleges to which they wish to progress are very likely to take the view that they have achieved only one of the two GCSEs. The same view may be taken if students take two GCSE or other Level 2 qualifications that have different discount codes but have significant overlap of content. Students or their advisers who have any doubts about their subject combinations should check with the institution to which they wish to progress before embarking on their programmes.

November resits

This qualification is available in both summer and November series. Entry to the November series is restricted. Students who take GCSE Mathematics in a November series must be at least 16 years of age on the preceding 31st August.

Please go to our website www.edexcel.com for further information.

Access arrangements, reasonable adjustments and special consideration

Access arrangements

Access arrangements are agreed before an assessment. They allow students with special educational needs, disabilities or temporary injuries to:

- access the assessment
- show what they know and can do without changing the demands of the assessment.

The intention behind an access arrangement is to meet the particular needs of an individual disabled student without affecting the integrity of the assessment. Access arrangements are the principal way in which awarding bodies comply with the duty under the Equality Act 2010 to make 'reasonable adjustments'.

Access arrangements should always be processed at the start of the course. Students will then know what is available and have the access arrangement(s) in place for assessment.

Reasonable adjustments

The Equality Act 2010 requires an awarding organisation to make reasonable adjustments where a person with a disability would be at a substantial disadvantage in undertaking an assessment. The awarding organisation is required to take reasonable steps to overcome that disadvantage.

A reasonable adjustment for a particular person may be unique to that individual and therefore might not be in the list of available access arrangements.

Whether an adjustment will be considered reasonable will depend on a number of factors, which will include:

- the needs of the student with the disability
- the effectiveness of the adjustment
- the cost of the adjustment; and
- the likely impact of the adjustment on the student with the disability and other students.

An adjustment will not be approved if it involves unreasonable costs to the awarding organisation, timeframes or affects the security or integrity of the assessment. This is because the adjustment is not 'reasonable'.

Special consideration

Special consideration is a post-examination adjustment to a student's mark or grade to reflect temporary injury, illness or other indisposition at the time of the examination/assessment, which has had, or is reasonably likely to have had, a material effect on a candidate's ability to take an assessment or demonstrate his or her level of attainment in an assessment.

Further information

Please see our website for further information about how to apply for access arrangements and special consideration.

For further information about access arrangements, reasonable adjustments and special consideration, please refer to the JCQ website: www.jcq.org.uk.

Equality Act 2010 and Pearson equality policy

Equality and fairness are central to our work. Our equality policy requires all students to have equal opportunity to access our qualifications and assessments, and our qualifications to be awarded in a way that is fair to every student.

We are committed to making sure that:

- students with a protected characteristic (as defined by the Equality Act 2010) are not, when they are undertaking one of our qualifications, disadvantaged in comparison to students who do not share that characteristic
- all students achieve the recognition they deserve for undertaking a qualification and that this achievement can be compared fairly to the achievement of their peers.

You can find details on how to make adjustments for students with protected characteristics in the policy document *Access Arrangements, Reasonable Adjustments and Special Considerations*, which is on our website, www.edexcel.com/Policies.

Awarding and reporting

This qualification will be graded, awarded and certificated to comply with the requirements of the current GCSE and GCE Code of Practice, published by the Office of Qualifications and Examinations Regulation (Ofqual).

The GCSE (9 to 1) qualification will be graded and certificated on a nine-grade scale from 9 to 1 using the total subject mark where 9 is the highest grade. Individual components are not graded. For Foundation tier grades 1 – 5 are available, and for Higher tier grades 4 – 9 are available (grade 3 allowed).

The first certification opportunity for the Pearson Edexcel Level 1/Level 2 GCSE (9–1) in Mathematics will be in 2017.

Students whose level of achievement is below the minimum judged by Pearson to be of sufficient standard to be recorded on a certificate will receive an unclassified U result.

Language of assessment

Assessment of this qualification will be available in English. All student work must be in English.

Grade descriptions

The grade descriptions for this qualification are published by Ofqual and will be available on its website.

Student recruitment

Pearson follows the JCQ policy concerning recruitment to our qualifications in that:

- they must be available to anyone who is capable of reaching the required standard
- they must be free from barriers that restrict access and progression
- equal opportunities exist for all students.

Prior learning

The qualification builds on the content, knowledge and skills developed in the *Key Stage 3 Programme of Study for Mathematics* (published by the Department for Education in September 2013).

Progression

Students can progress from this qualification to Level 3 qualifications in numerate disciplines, such as:

- Core Mathematics
- GCE Mathematics and GCE Further Mathematics
- GCEs in the sciences
- GCE Geography
- GCE Psychology
- GCE Economics
- other qualifications that require mathematical skills, knowledge and understanding.

There is a clear progression path from Foundation tier to Higher tier within this qualification.

This qualification also supports further training and employment where mathematical skills are required.

Progression from GCSE

This qualification prepares students for progression to further study of mathematics at AS and A level, and also to the study of Core Mathematics. These Level 3 qualifications prepare students for a variety of further progression routes. Students should seek advice about which of these qualifications best prepares them for their intended progression routes.

GCSE Mathematics is a requirement for progression to a wide range of courses at Level 3. Students are expected to continue with their study of GCSE Mathematics after the age of 16 if they have not achieved the qualification at Key Stage 4.

Appendices

Appendix 1: Transferable skills	37
Appendix 2: Codes	39
Appendix 3: Mathematical formulae	41

Appendix 1: Transferable skills

The need for transferable skills

In recent years, higher education institutions and employers have consistently flagged the need for students to develop a range of transferable skills to enable them to respond with confidence to the demands of undergraduate study and the world of work.

The Organisation for Economic Co-operation and Development (OECD) defines skills, or competencies, as 'the bundle of knowledge, attributes and capacities that can be learned and that enable individuals to successfully and consistently perform an activity or task and can be built upon and extended through learning.'¹

To support the design of our qualifications, the Pearson Research Team selected and evaluated seven global 21st-century skills frameworks. Following on from this process, we identified the National Research Council's (NRC) framework as the most evidence-based and robust skills framework. We adapted the framework slightly to include the Program for International Student Assessment (PISA) ICT Literacy and Collaborative Problem Solving (CPS) Skills.

The adapted National Research Council's framework of skills involves:²

Cognitive skills

- **Non-routine problem solving** expert thinking, metacognition, creativity.
- Systems thinking decision making and reasoning.
- **Critical thinking** definitions of critical thinking are broad and usually involve general cognitive skills such as analysing, synthesising and reasoning skills.
- **ICT literacy** access, manage, integrate, evaluate, construct and communicate³.

Interpersonal skills

- **Communication** active listening, oral communication, written communication, assertive communication and non-verbal communication.
- **Relationship-building skills** teamwork, trust, intercultural sensitivity, service orientation, self-presentation, social influence, conflict resolution and negotiation.
- **Collaborative problem solving** establishing and maintaining shared understanding, taking appropriate action, establishing and maintaining team organisation.

¹ OECD (2012), Better Skills, Better Jobs, Better Lives (2012): http://ckills.acsd.arg/documents/OECDSkillsStrategyEINALENC.pd

http://skills.oecd.org/documents/OECDSkillsStrategyFINALENG.pdf

² Koenig, J. A. (2011) Assessing 21st Century Skills: Summary of a Workshop, National Research Council

³ PISA (2011) The PISA Framework for Assessment of ICT Literacy, PISA

Intrapersonal skills

- **Adaptability** ability and willingness to cope with the uncertain, handling work stress, adapting to different personalities, communication styles and cultures, and physical adaptability to various indoor and outdoor work environments.
- Self-management and self-development ability to work remotely in virtual teams, work autonomously, be self-motivating and self-monitoring, willing and able to acquire new information and skills related to work.

Transferable skills enable young people to face the demands of further and higher education, as well as the demands of the workplace, and are important in the teaching and learning of this qualification. We will provide teaching and learning materials, developed with stakeholders, to support our qualifications.

Appendix 2: Codes

Type of code	Use of code	Code number
Discount codes	Every qualification is assigned to a discount code indicating the subject area to which it belongs. This code may change. Please refer to our website (www.edexcel.com) for details of any changes.	RB1
National Qualifications Framework (NQF)	Each qualification title is allocated an Ofqual National Qualifications Framework (NQF) code.	The QN for the qualification in this publication is:
codes	The NQF code is known as a Qualification Number (QN). This is the code that features in the DfE Section 96 and on the LARA as being eligible for 16–18 and 19+ funding, and is to be used for all qualification funding purposes. The QN is the number that will appear on the student's final certification documentation.	GCSE (9 to 1) - 601/4700/3
Subject codes	The subject code is used by centres to enter students for a qualification. Centres will need to use the entry codes only when claiming students' qualifications.	GCSE (9-1) - 1MA1
Paper/component code	These codes are provided for reference purposes. Students do not need to be entered for individual papers/components.	Paper 1: 1MA1/1F or 1MA1/1H Paper 2: 1MA1/2F or 1MA1/2H Paper 3: 1MA1/3F or 1MA1/3H

Appendix 3: Mathematical formulae

The following formulae will be provided for students within the relevant examination questions.

Perimeter, area, surface area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Sb190615Z:\LT\PD\GCSE 2015\9781446927205_GCSE_2015_L12_MATHS_ISSUE2.DOC.1-52/0

For information about Edexcel, BTEC or LCCI qualifications visit qualifications.pearson.com

Edexcel is a registered trademark of Pearson Education Limited

Pearson Education Limited. Registered in England and Wales No. 872828 Registered Office: 80 Strand, London WC2R 0RL VAT Reg No GB 278 537121

edexcel

GCSE (9-1) Mathematics

Sample Assessment Materials

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics (1MA1)

First teaching from September 2015

First certification from June 2017

Issue 2

PEARSON

Edexcel, BTEC and LCCI qualifications

Edexcel, BTEC and LCCI qualifications are awarded by Pearson, the UK's largest awarding body offering academic and vocational qualifications that are globally recognised and benchmarked. For further information, please visit our qualification websites at www.edexcel.com, www.btec.co.uk or www.lcci.org.uk. Alternatively, you can get in touch with us using the details on our contact us page at qualifications.pearson.com/contactus

About Pearson

Pearson is the world's leading learning company, with 40,000 employees in more than 70 countries working to help people of all ages to make measurable progress in their lives through learning. We put the learner at the centre of everything we do, because wherever learning flourishes, so do people. Find out more about how we can help you and your learners at qualifications.pearson.com

References to third party material made in this document are made in good faith. Pearson does not endorse, approve or accept responsibility for the content of materials, which may be subject to change, or any opinions expressed therein. (Material may include textbooks, journals, magazines and other publications and websites.)

All information in this document is correct at time of publication.

Original origami artwork: Mark Bolitho Origami photography: Pearson Education Ltd/Naki Kouyioumtzis

ISBN 9781446927212

All the material in this publication is copyright © Pearson Education Limited 2015

Contents

1	Introduction	1
2	General marking guidance	3
3	Mathematics Paper 1F	7
4	Mathematics Paper 1F Mark Scheme	27
5	Mathematics Paper 2F	35
6	Mathematics Paper 2F Mark Scheme	55
3	Mathematics Paper 3F	63
4	Mathematics Paper 3F Mark Scheme	83
3	Mathematics Paper 1H	89
4	Mathematics Paper 1H Mark Scheme	109
5	Mathematics Paper 2H	117
6	Mathematics Paper 2H Mark Scheme	137
3	Mathematics Paper 3H	145
4	Mathematics Paper 3H Mark Scheme	165

Introduction

The Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics is designed for use in schools and colleges. It is part of a suite of GCSE qualifications offered by Pearson.

These sample assessment materials have been developed to support this qualification and will be used as the benchmark to develop the assessment students will take.

2 Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015 These notes offer general guidance, but the specific notes for examiners appertaining to individual questions take precedence.

1 All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.

Where some judgement is required, mark schemes will provide the principles by which marks will be awarded; exemplification/indicative content will not be exhaustive.

2 All the marks on the mark scheme are designed to be awarded; mark schemes should be applied positively. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. If there is a wrong answer (or no answer) indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

Questions where working is not required: In general, the correct answer should be given full marks.

Questions that specifically require working: In general, candidates who do not show working on this type of question will get no marks – full details will be given in the mark scheme for each individual question.

3 Crossed out work

This should be marked **unless** the candidate has replaced it with an alternative response.

4 Choice of method

If there is a choice of methods shown, mark the method that leads to the answer given on the answer line.

If no answer appears on the answer line, mark both methods **then award the lower number of marks.**

5 Incorrect method

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review for your Team Leader to check.

6 Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working as you can check the answer, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

7 Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question or its context. (eg. an incorrectly cancelled fraction when the unsimplified fraction would gain full marks).

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect (eg. incorrect algebraic simplification).

8 Probability

Probability answers must be given as a fraction, percentage or decimal. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).

Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.

If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.

If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

9 Linear equations

Unless indicated otherwise in the mark scheme, full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously identified in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

10 Range of answers

Unless otherwise stated, when an answer is given as a range (e.g 3.5 - 4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and all numbers within the range.

Guida	nce on the use of abbreviations within this mark scheme
М	method mark awarded for a correct method or partial method
P questi	process mark awarded for a correct process as part of a problem solving on
A	accuracy mark (awarded after a correct method or process; if no method or process is seen then full marks for the question are implied but see individual mark schemes for more details)
С	communication mark
В	unconditional accuracy mark (no method needed)
oe	or equivalent
сао	correct answer only
ft	follow through (when appropriate as per mark scheme)
sc	special case
dep	dependent (on a previous mark)
indep	independent
awrt	answer which rounds to
isw	ignore subsequent working

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015

1	Advice	
	• Read each question carefully before you start to answer it.	
	• Keep an eye on the time.	
•	 Try to answer every question. 	
•	 Check your answers if you have time at the end. 	
S48571 ©2015 Pearson Education L 6/4/7/7/7/4/6/6/6/6/		Turn over ► PEARSON
Pearson Ec	excel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAM © Pearson I	ls) - Issue 2 - June 2015 Education Limited 2015

Surname		Other names
earson Edexcel evel 1/Level 2 GCSE (9 - 1)	Centre Number	Candidate Number
Mathemat Paper 1 (Non-Calcula	tics ator)	
Mathemat Paper 1 (Non-Calcula	tics ator)	Foundation Tie
Mathemat Paper 1 (Non-Calcula Sample Assessment Materials – Issue 2	tics ator)	Foundation Tie

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- Calculators may not be used.
- Diagrams are **NOT** accurately drawn, unless otherwise indicated.
- You must **show all your working out**.

Information

- The total mark for this paper is 80
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.

DO NOT WRITE IN THIS AREA

		Answer AL	L questio	ons.	
	Write ye	our answers i	n the spa	ces provided.	
	You must wr	ite down all t	the stages	in your working.	
1	Write the following numbers in or Start with the smallest number.	der of size.			
	0.61	0.1	0.16	0.106	
				(Total for Question 1 is 1 mark)	
2	Write 0.037 as a fraction				
-					
				(Total for Ouestion 2 is 1 mark)	
2	Write down the 20th odd number				
5	white down the 20th odd humber.				
				(Total for Question 3 is 1 mark)	

					(Total f	or Question	n 4 is 2 marks)
Tanya Each	needs to buy of the 130 chi	chocolate b ldren get on	bars for all the chocolate	he children bar.	in Year 7		
There	are 8 chocola	ate bars in ea	ach packet.				
Work	out the least 1	number of pa	ackets of ch	ocolate bar	s that Tanya	needs to bu	ıy.
					(Total f	or Question	1 5 is 3 marks)
					(Total f	or Question	1 5 is 3 marks)
Greg	rolls a fair orc	linary dice o	once.		(Total f	or Question	1 5 is 3 marks)
Greg : (i) O: or	rolls a fair orc n the probabil	linary dice c ity scale, ma per.	once. ark with a c	ross (×) the	(Total f probability	or Question that the dic	n 5 is 3 marks) ee will land
Greg : (i) O: or	rolls a fair ord n the probabil an odd numb	linary dice c ity scale, ma per.	once. ark with a c	ross (×) the	(Total f probability	or Question	n 5 is 3 marks) ee will land
Greg : (i) O: or	rolls a fair orc n the probabil 1 an odd numb	linary dice c ity scale, ma per.	once. ark with a c	ross (×) the	(Total f probability	or Question	n 5 is 3 marks) ee will land
Greg (i) O or	rolls a fair orc n the probabil n an odd numb 0	linary dice c ity scale, ma per.	once. ark with a c	ross (×) the $\frac{1}{2}$	(Total f probability	or Question that the dic	n 5 is 3 marks) ee will land
Greg (i) O: or	rolls a fair orc n the probabil n an odd numb 0	linary dice c ity scale, ma ber.	once. ark with a c	ross (×) the $\frac{1}{2}$	(Total f probability	or Question that the dic	n 5 is 3 marks) we will land
Greg (i) O: (i) O: (ii) O:	rolls a fair orc n the probabil n an odd numb 0 n the probabil	linary dice c ity scale, ma ber.	once. ark with a c	ross (×) the $\frac{1}{2}$ ross (×) the	(Total f probability probability	or Question that the dic	n 5 is 3 marks) we will land
Greg (i) O: or (ii) O: or	rolls a fair orc n the probabil a an odd numb 0 n the probabil a a number les	linary dice c ity scale, ma ber.	once. ark with a c	ross (×) the $\frac{1}{2}$ ross (×) the	(Total f probability probability	or Question that the dic	n 5 is 3 marks) we will land
Greg (i) O: or (ii) O: or	rolls a fair oron n the probabil n an odd numb 0 n the probabil n a number les	dinary dice c ity scale, ma ber.	once. ark with a c	ross (×) the $\frac{1}{2}$ ross (×) the	(Total f probability probability	or Question that the dic that the dic	n 5 is 3 marks) we will land

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

٢.				5		5	
					5		
					э		
7				2		7	
Ν.			1	١,	/	١.	
					5		
>							
					>		
2						2	
s	2				2	٩.	
			ς,		١.		
						5	
	à	é	è	í	è		
>	1	7		7	9	Э	
	1	6	4	ы	F		
		Ζ	3	2	5		
	G		-		ĸ	S	
	1	ĸ.			s		
	Q		6	à	R	2	
			7	5	7		
					١,	7	
N	4	-	-		ı	ъ	
	Э	4	ð	٢			
2	q				ú	2	
		s	÷.	١.	2		
/	Ч	P	7	2	ь.	/	
2	4	ь		2	8	5	
	3	8			5		
					8		
	A				P		
/				1	۳,	/	
``		``		5		5	
	2	4	2	é	ø		
	0		5		ζ.		
		C	2		P	S.	
7	4		5	2	2	7	
٦,			7	7	٣	1	
	1				8		
	6	2		2	,	Э	
	,	5	7	÷	2		
2	1				b.	2	
`					×.	N	
	ï	ń	è	ú	B.		
	С	7	τ	2	٠	Э	
	2	۷.	2	2	2		
2	9	r		2		2	
1	4	ь	,8	Ы	ĸ	٩,	
					5		
	4	2	4	2	4		
	2	e	7	e	-		
2	4	-	-		h	2	
1		5	d	P	7	٢,	
	1		÷.	ń	ø		
					÷	s	ļ
7	'n	×.	'n	×.	U.	2	
٦,				7	r	1	
	h	4	2	4	3		
	e	7		2	₹.	Э	
	ŝ	ς.		<u>.</u>	2		
7	4	7	-	-	٦	/	
N	1				ø	N	
	à	6	2	4	3		
2	1		4	0	6		
	2		,		ø		
7		2	1	2	5	2	
1	4	2		5		١,	
	3	đ	P	6	è		
	G	4	í.		ę		
	,	1	7		2		
2	4	n			b.	2	
``	2	2			ø	5	
	1	ø	9	ø	۳,		
	á	è	6	à	ń	э	
	J	r	1	N	r		
2	ų	ÿ	۴		۲	2	
١,	đ	÷	2	2	è	5	
		- 31					
		< 1					
5	ì	g	ķ	2	C	5	

7	One day Sally earned £60 She worked for 8 hours.
	Work out Sally's hourly rate of pay.
	ſ
	(Total for Question 7 is 2 marks)
	(Total for Question 7 is 2 marks)
8	Work out 15% of 80
	(Total for Question 8 is 2 marks)
9	A bead is taken at random from the jar.
	What is the probability that the bead is blue?
	(Total for Question Q is 1 mark)
	(Total for Question 9 is 1 mark)
10	There are only black pens and green pens in a box. The ratio of the number of black pens in the box to the number of green pens in the box is 2.5
	What fraction of the pens are black?
[(Total for Question 10 is 1 mark)

11 Sally has three tiles.Each tile has a different number on it.Sally puts the three tiles down to make a number.Each number is made with all three tiles.

2 3 1

How many different numbers can Sally make?

(Total for Question 11 is 2 marks)

Paul organised an event for a charity.	
Each ticket for the event cost £19.95 Paul sold 395 tickets.	
Paul paid costs of £6000 He gave all money left to the charity.	
(a) Work out an estimate for the amount of mon	ey Paul gave to the charity.
	£
	(3)
(b) Is your answer to (a) an underestimate or an Give a reason for your answer.	overestimate?
	(1)
	(Total for Question 13 is 4 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA
14 The table shows information about the numbers of fruit trees in an orchard.

Apple tree	Pear tree	Plum tree
45	20	25

(a) The pictogram shows this information.

Complete the key for the pictogram.

(b) There are 90 fruit trees in the orchard.

Apple tree	Pear tree	Plum tree
45	20	25

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS ARE

15 Carpet tiles are going to be used to cover a floor.

The floor is a 1200mm by 1000mm rectangle. Each carpet tile is a 40cm by 30cm rectangle.

Exactly 10 carpet tiles can be used to cover the floor completely.

Show in a labelled sketch how this can be done.

(Total for Question 15 is 3 marks)

16 Sam buys 20 boxes of oranges. There are 25 oranges in each box.

Each boxes of oranges costs £7

Sam sells $\frac{2}{5}$ of the oranges he bought.

He sells each of these oranges for 40p.

He then sells each of the remaining oranges at 3 oranges for 50p.

Did Sam make a profit or did Sam make a loss? You must show working to justify your answer.

(Total for Question 16 is 5 marks)

17 100 students had some homework.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

42 of these students are boys.8 of the 100 students did **not** do their homework.53 of the girls did do their homework.

(a) Use this information to complete the frequency tree.

(3)

One of the girls is chosen at random.

(b) Work out the probability that this girl did **not** do her homework.

(2)

(Total for Question 17 is 5 marks)

18 (a) Work out
$$\frac{2}{7} + \frac{1}{5}$$
 (2)

 (b) Work out $1\frac{2}{3} + \frac{3}{4}$
 (2)

 (c)
 (2)

 (c)
 (2)

 (c)
 (c)

 (c)

20 In a sale, normal prices are reduced by 20%. The normal price of a coat is reduced by £15

Work out the normal price of the coat.

£.....

(Total for Question 20 is 2 marks)

21 Work out 6.34 × 5.2

(Total for Question 21 is 3 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015

22 Expand and simplify (m + 7)(m + 3)(Total for Question 22 is 2 marks) 23 E 38° D В G x 38° F CAE, DBG and CF are parallel. DA = DB = DC.Angle EAB = angle BCF = 38° Work out the size of the angle marked *x*. You must show your working.

(Total for Question 23 is 3 marks)

24 Gary drove from London to Sheffield. It took him 3 hours at an average speed of 80km/h. Lyn drove from London to Sheffield. She took 5 hours. Assuming that Lyn drove along the same roads as Gary and did not take a break, (a) work out Lyn's average speed from London to Sheffield.km/h (3) (b) If Lyn did not drive along the same roads as Gary, explain how this could affect your answer to part (a). (1) (Total for Question 24 is 4 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

25 In a company, the ratio of the number of men to the number of women is 3:2

40% of the men are under the age of 25 10% of the women are under the age of 25

What percentage of all the people in the company are under the age of 25?

(Total for Question 25 is 4 marks)

%

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015 **26** The plan, front elevation and side elevation of a solid prism are drawn on a centimetre grid.

	fron	t eleve	ation		side	eleva	tion	
	р	lan						

In the space below, draw a sketch of the solid prism. Write the dimensions of the prism on your sketch.

(Total for Question 26 is 2 marks)

27 There are 1200 students at a school.

Kate is helping to organise a party. She is going to order pizza.

Kate takes a sample of 60 of the students at the school. She asks each student to tell her **one** type of pizza they want.

The table shows information about her results.

Pizza	Number of students			
ham	20			
salami	15			
vegetarian	8			
margarita	17			

Work out how much ham pizza Kate should order.

Write down any assumption you make and explain how this could affect your answer.

(Total for Question 27 is 3 marks)

28 Here is a parallelogram.

Work out the value of *x* and the value of *y*.

x =

y =

(Total for Question 28 is 5 marks)

DO NOT WRITE IN THIS AREA

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015

(Total for Question 30 is 2 marks)

TOTAL FOR PAPER IS 80 MARKS

	Notes				for at least 3 factors	for all factors with no additions	start to process information eg. $130 \div 8$ or repeated subtraction from 130 or repeated addition	16.25 or 16 remainder 2 or 128 or 136	allow ft - interprets answer to round up to integer value		
		B1	B1	B1	M1	A1	P1	A1	C1	B1	B1
	Answer	0.1,0.106,0.16,0.61	$\frac{37}{1000}$	39	1, 2, 4, 5, 10, 20		17			\times at $\frac{1}{2}$	\times at $\frac{4}{6}$
: 1F	Working										
Paper 1MA1	Question	1	2	3	4		5			6 (i)	(ii)

	Notes	8÷(:cept 7.5	$(1 \text{ for } 0.15 \times 80 \text{ oe } \mathbf{or} 8 + 4)$	0	00		r starting to list combinations	0	vidence of interpretation of pattern, eg. further diagrams drawn or imerical sequence for numbers of trianoles 6, 8, 10 etc.		o with reason eg. No , pattern number 6 will have 7 squares; ways one more square than pattern number
		M1 6	A1 ac	M1 N	A1 ci	31 1	31	M1 fc	A1 ci	M1 E	41	C1 N al
	Answer	7.50	7	12	7	- 4	1	6	7	18	7	No with reason
: 1F	Working											
Paper 1MA1:	Question	7		8		6	10	11		12 (a)		(q)

Paper 1MA1	1: 1F			
Question	Working	Answer		Notes
13 (a)		2000	P1	Evidence of estimate eg. 400 or 20 used in calculation
			P1	complete process to solve problem
			A1	
(q)		Overestimate with reason	C1	ft from (a) eg. overestimate as two numbers rounded up
14 (a)		5	B1	
(q)		Correct pie chart with labels	C1	For apples shown as 'half' ie 180° on pie chart
			C1	All angles calculated correctly (Angles of 180°, 80°, 100°) or pie chart with correct analyse
			C1	Fully correct pie chart with labels of apple, pear and plum
15		Correct diagram with lavout and lenoths	M1	for changing to consistent units eg. 1000 \div 10 or 40 \times 10
			M1	for interpreting information and a process to fit tiles in floor area
			C1	eg. may be seen in a sketch or a calculation for a diagram to communicate a correct layout with lengths clearly identified
16		loss (supported by correct figures)	P1	process to find total spent eg. 20×7 (=140)
			P1	complete process to find profit from full price oranges
				eg. $\frac{2}{5} \times 25 \times 20 \times 40 (= 8000)$
			P1	complete process to find profit from reduced price oranges
				eg. $50 \times \left(\frac{3}{5} \times 25 \times 20\right) \div 3(=5000)$
			P1 A1	complete process to find total income with consistent units loss with £10 or $-$ £10 or £130 and £140

Paper 1MA1	1: 1F			
Question	Working	Answer	Notes	
17 (a)		42, 58 39, 3, 53, 5	starts to interpret information eg. one correct	frequency
		5 5	continue to interpret information	
			communicates all information correctly	
(q)		5 58	1 ft for $\frac{a}{58}$ with $a < 58$ or $\frac{5}{b}$ with $b > 5$	
			ft from (a)	
18 (a)		17	l for common denominators with at least one r	umerator correct
		35		
(q)		<u>20</u>	l for $\frac{5}{2} \times \frac{4}{2}$ or $\frac{20}{12} \div \frac{9}{12}$	
		م	5 5 12 12	
19		L	1 Correct method to isolate terms in x	
20		75	for start to process eg. linking 20% with 15 c	r 100 ÷ 5 (=20)

Paper 1MA	1: 1F			
Question	Working	Answer		Notes
21		32.968	M1	for correct method (condone one error)
			A1	for digits 32968
			A1	ft (dep M1) for correct placement of decimal pt
22		$m^2 + 10m + 21$	M1	for at least 3 terms out of a maximum of 4 correct from expansion
			A1	
23		152	M1	Start to method $ABD = 38^{\circ}$ and BAD or DBC or $DCB = 38^{\circ}$
			M1	<i>ADB</i> or <i>BDC</i> = $180 - 2 \times 38$ (=104)
			A1	for 152 with working
24 (a)		48	P1	start to process eg. 3×80 (=240)
			P1	$(240)^{\circ} + 5$
			A1	
(q)			C1	eg. she may drive a different distance and therefore her average speed could be different

	Notes	Process to start to solve problem eg. $\frac{3}{5} \times 40$ or divide any number in the ratio 3:2	Second step in process to solve problem eg. $\frac{2}{5} \times 10$ or find number of males/females under 25 for candidate's chosen number	for complete process		interprets diagram eg. draw a solid shape with at least two correct dimensions	draws correct prism with all necessary dimensions.	Start to process eg. $1200 \div 60$	1 400 oe (accept number of whole pizzas eg. $400 \div 4 = 100$ with 4 neonle per nizza)	Eq. Assumption that sample is representative of population – it may not be all 1200 people are going to the party – need less pizza if they don't, assume 4 people per pizza – if different may need more/fewer pizzas	
		P1	P1	P1	A1	C1	C1	P1	A1	C1	
	Answer	28				Correct sketch		400			
: 1F	Working										
Paper 1MA1	Question	25				26		27			

Paper 1MA1	:1F			
Question	Working	Answer		Notes
28		x = 21, y = 50	Pl	process to start solving problem eg. form an appropriate equation
			Pl	complete process to isolate terms in x
			A1	for $x = 21$
			Pl	complete process to find second variable
			A1	y = 50
29		Rotation of 90°	M1	For two of 'rotation', (0,0), 90° clockwise oe
		CIOCKWISE ADOUL (0,0)	A1	Correct transformation
30		$\begin{pmatrix} -2\\ 16 \end{pmatrix}$	C1	For $\begin{pmatrix} 4 \\ 2 \end{pmatrix} - 2 \begin{pmatrix} 3 \\ -7 \end{pmatrix}$
			C1	

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015 34

• • •	Read each question carefully before you start to answer it. Keep an eye on the time. Try to answer every question. Check your answers if you have time at the end.	
S48573A ©2015 Pearson Education Ltd. 6/4/7/7/4/6/6/6/	S 4 8 5 7 3 A 0 1 2 0	Turn over ► PEARSON
Pearson Edex	cel Level I/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SA © Pearson	Ms) - Issue 2 - June 2015 35 Education Limited 2015

Surname		Other names	
earson Edexcel evel 1/Level 2 GCSE (9 - 1)	Centre Number	Can	didate Number
Mathemat Paper 2 (Calculator)	tics		
Mathemat Paper 2 (Calculator)	tics	Found	lation Tie
Mathemat Paper 2 (Calculator) Sample Assessment Materials – Issue 2	tics	Found	lation Tie

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** guestions.
- Answer the questions in the spaces provided - there may be more space than you need.
- Calculators may be used.
- If your calculator does not have a π button, take the value of π to be 3.142 unless the question instructs otherwise.
- Diagrams are **NOT** accurately drawn, unless otherwise indicated.
- You must **show all your working out.**

Information

- The total mark for this paper is 80
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

_

Write your answers in the space You must write down all the stages i Write down the value of the 3 in the number 4376	s provided. n your working. <u>Total for Question 1 is 1 mark)</u> <u>Total for Question 2 is 1 mark)</u> 31 64
You must write down all the stages i Write down the value of the 3 in the number 4376 (a) Write $\frac{7}{16}$ as a decimal. Here is a list of numbers 4 7 9 25 27 From the numbers in the list, write down a cube number. From the numbers in the list, write down a cube number.	n your working. <u>Total for Question 1 is 1 mark</u>) <u>Total for Question 2 is 1 mark</u>) 31 64
Write down the value of the 3 in the number 4376 (a) Write $\frac{7}{16}$ as a decimal. Here is a list of numbers 4 7 9 25 27 From the numbers in the list, write down a cube number. Find the value of $(2.8 - 0.45)^2 + \sqrt[3]{5.832}$	Total for Question 1 is 1 mark) Total for Question 2 is 1 mark) 31
(a) Write $\frac{7}{16}$ as a decimal. Here is a list of numbers 4 7 9 25 27 From the numbers in the list, write down a cube number. Find the value of $(2.8 - 0.45)^2 + \sqrt[3]{5.832}$	Total for Question 1 is 1 mark) Total for Question 2 is 1 mark) 31 64
(a) Write $\frac{7}{16}$ as a decimal. Here is a list of numbers 4 7 9 25 27 From the numbers in the list, write down a cube number. Find the value of $(2.8 - 0.45)^2 + \sqrt[3]{5.832}$	Total for Question 1 is 1 mark) Total for Question 2 is 1 mark) 31 64
(a) Write $\frac{7}{16}$ as a decimal. Here is a list of numbers 4 7 9 25 27 From the numbers in the list, write down a cube number. Find the value of $(2.8 - 0.45)^2 + \sqrt[3]{5.832}$	Total for Question 1 is 1 mark) Total for Question 2 is 1 mark) 31 64
(a) Write $\frac{7}{16}$ as a decimal. Here is a list of numbers 4 7 9 25 27 From the numbers in the list, write down a cube number. Find the value of $(2.8 - 0.45)^2 + \sqrt[3]{5.832}$	Total for Question 2 is 1 mark) 31 64
Here is a list of numbers 4 7 9 25 27 From the numbers in the list, write down a cube number. Find the value of $(2.8 - 0.45)^2 + \sqrt[3]{5.832}$	Total for Question 2 is 1 mark) 31 64
Here is a list of numbers 4 7 9 25 27 From the numbers in the list, write down a cube number. Find the value of $(2.8 - 0.45)^2 + \sqrt[3]{5.832}$	Total for Question 2 is 1 mark) 31 64
Here is a list of numbers 4 7 9 25 27 From the numbers in the list, write down a cube number. Find the value of $(2.8 - 0.45)^2 + \sqrt[3]{5.832}$	Total for Question 2 is 1 mark) 31 64
Here is a list of numbers 4 7 9 25 27 From the numbers in the list, write down a cube number. Find the value of $(2.8 - 0.45)^2 + \sqrt[3]{5.832}$	31 64
4 7 9 25 27 From the numbers in the list, write down a cube number. Find the value of $(2.8 - 0.45)^2 + \sqrt[3]{5.832}$	31 64
From the numbers in the list, write down a cube number. Find the value of $(2.8 - 0.45)^2 + \sqrt[3]{5.832}$	
Find the value of $(2.8 - 0.45)^2 + \sqrt[3]{5.832}$	
Find the value of $(2.8 - 0.45)^2 + \sqrt[3]{5.832}$	
Find the value of $(2.8 - 0.45)^2 + \sqrt[3]{5.832}$	Total for Question 3 is 1 mark)

5 There are some boys and girls in a classroom. The probability of picking at random a boy is $\frac{1}{3}$ What is the probability of picking a girl?

(Total for Question 5 is 1 mark)

6 Jan writes down

one multiple of 9 and two different factors of 40

Jan adds together her three numbers. Her answer is greater than 20 but less than 30

Find three numbers that Jan could have written down.

(Total for Question 6 is 3 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Sam and Max work in a shop from Monday to Friday. 8 Sam draws a graph to show the number of TVs they each sell. 9 8 7 6 5 3 2 1 0 Tuesday Wednesday Monday Thursday Friday Write down three things that are wrong with this graph. 1..... 2 3 (Total for Question 8 is 3 marks) Here is a list of numbers 9 12 19 12 15 11 15 12 13 17 Find the median. (Total for Question 9 is 2 marks)

DO NOT WRITE IN THIS AREA

OT WRITE IN THIS AREA

NOT WRITE IN THIS AREA

Write down an e	expression for the total number of packets of crisps Rob buys.	
(b) Solve $3x - 5 =$	= 9	(1)
	<i>x</i> =	(2)
1 Adam says	(Total for Question 10 is	3 marks)
(a) Write down an e	"When you multiply an even number by an odd number the answer is always an odd number." example to show Adam is wrong.	
Betty says, (b) Betty is wrong. Explain why.	"When you multiply two prime numbers together the answer is always an odd number."	(1)
	(Total for Ouestion 11 is	(2) 3 marks)

12 You can use the information in the table to convert between kilometres and miles.

miles	0	5	20	40
kilometres	0	8	32	64

(a) Use this information to draw a conversion graph.

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015

14 The diagram shows a tank in the shape of a cuboid. It also shows a container in the shape of a cuboid.

The tank is full of oil. The container is empty.

35% of the oil from the tank is spilled. The rest of the oil from the tank is put into the container.

Work out the height of the oil in the container. Give your answer to an appropriate degree of accuracy.

cm

43

(Total for Question 14 is 5 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

	Diagram accurately drawn
× Towey	× Worsley
Scale: 1 cm represents 3 kilometres.	
Work out the distance, in kilometres, be	etween Towey and Worsley.
	Irma
	(Total for Question 15 is 2 marks)
	(Total for Question 15 is 2 marks)
Find the Highest Common Factor (HCF	F) of 24 and 60
	(Total for Question 16 is 2 marks)

17 Soap powder is sold in three sizes of box.

A 2 kg box of soap powder costs £1.89 A 5 kg box of soap powder costs £4.30 A 9 kg box of soap powder costs £8.46

Which size of box of soap powder is the best value for money? You must show how you get your answer.

(Total for Question 17 is 3 marks)

45

DO NOT WRITE IN THIS AREA

Find the value of <i>f</i> . Find the value of <i>f</i> . (Total for Question 18 is 2 marks) 19 Jane made some almond biscuits which she sold at a fete. She had: She had: She had: She of flour 3 kg of butter 2.5 kg of icing sugar 320 g of almonds Here is the list of ingredients for making 24 almond biscuits. Ingredients for 24 almond biscuits I50 g flour 100 g butter 75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.	18	f = 5x + 2y r = 3 and v = -2		
Find the value of <i>f</i> . (Total for Question 18 is 2 marks) 19 Jane made some almond biscuits which she sold at a fete. She had: 5 kg of flour 3 kg of butter 2.5 kg of icing sugar 320 g of almonds Here is the list of ingredients for making 24 almond biscuits. Ingredients for 24 almond biscuits 150 g flour 100 g butter 75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.				
19 Jane made some almond biscuits which she sold at a fete. She had: 5 kg of flour 3 kg of butter 2.5 kg of almonds Here is the list of ingredients for making 24 almond biscuits. Ingredients for 24 almond biscuits 150 g flour 100 g butter 75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.		Find the value of f .		
19 Jane made some almond biscuits which she sold at a fete. She had: 5 kg of flour 3 kg of butter 2.5 kg of ing sugar 320 g of almonds Here is the list of ingredients for making 24 almond biscuits. Ingredients for 24 almond biscuits 150 g flour 100 g butter 75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.				
(Total for Question 18 is 2 marks) 19 Jane made some almond biscuits which she sold at a fete. She had: Skg of flour 3 kg of butter 2.5 kg of icing sugar 320 g of almonds Here is the list of ingredients for making 24 almond biscuits. Ingredients for 24 almond biscuits 150 g flour 100 g butter 75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.				
(Total for Question 18 is 2 marks) 19 Jane made some almond biscuits which she sold at a fete. She had: S kg of flour 3 kg of butter 2.5 kg of icing sugar 320 g of almonds Here is the list of ingredients for making 24 almond biscuits. Ingredients for 24 almond biscuits 150 g flour 100 g butter 75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.				
19 Iane made some almond biscuits which she sold at a fete. She had: 5 kg of four 3 kg of butter 2.5 kg of cing sugar 320 g of almonds Here is the list of ingredients for making 24 almond biscuits. Ingredients for 24 almond biscuits 150 g flour 100 g butter 75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.				
19 Iane made some almond biscuits which she sold at a fete. She had: 5 kg of four 3 kg of butter 2.5 kg of icing sugar 320 g of almonds Ingredients for making 24 almond biscuits. Ingredients for 24 almond biscuits 150 g flour 10 g butter 75 g icing sugar 10 g butter 75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made. Work out how many almond biscuits she made.				
19 Jane made some almond biscuits which she sold at a fete. She had: 5 kg of flour 3 kg of butter 2.5 kg of icing sugar 320 g of almonds Here is the list of ingredients for making 24 almond biscuits. Ingredients for 24 almond biscuits 150 g flour 100 g butter 75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.			(Tota	l for Question 18 is 2 marks)
 19 Jane made some almond biscuits which she sold at a fete. She had: 5 kg of flour 3 kg of butter 2.5 kg of icing sugar 320 g of almonds Here is the list of ingredients for making 24 almond biscuits. Ingredients for 24 almond biscuits 150 g flour 100 g butter 75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made. 			(100	
She had: 5 kg of flour 3 kg of butter 2.5 kg of icing sugar 320 g of almonds Here is the list of ingredients for making 24 almond biscuits. Ingredients for 24 almond biscuits 150 g flour 100 g butter 75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.	19	Jane made some almo	ond biscuits which she sold at a fete.	
Site nat. S kg of flour 3 kg of butter 2.5 kg of icing sugar 320 g of almonds Here is the list of ingredients for making 24 almond biscuits. Ingredients for 24 almond biscuits 150 g flour 100 g butter 75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.		She had		
3 kg of butter 2.5 kg of icing sugar 320 g of almonds Here is the list of ingredients for making 24 almond biscuits. Ingredients for 24 almond biscuits 150 g flour 100 g butter 75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.		5 kg of flour		
2.5 kg of icing sugar 320 g of almonds Here is the list of ingredients for making 24 almond biscuits. Ingredients for 24 almond biscuits 150 g flour 100 g butter 75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.		3 kg of butter		
Here is the list of ingredients for making 24 almond biscuits. Ingredients for 24 almond biscuits 150 g flour 100 g butter 75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.		2.5 kg of icing sug	<i>zar</i>	
Here is the list of ingredients for making 24 almond biscuits. Ingredients for 24 almond biscuits 150 g flour 100 g butter 75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.		320 g of almonds		
Ingredients for 24 almond biscuits 150 g flour 100 g butter 75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.		Here is the list of ingr	edients for making 24 almond biscuits.	
Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.		Γ		
150 g flour100 g butter75 g icing sugar10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had.Work out how many almond biscuits she made.			Ingredients for 24 almond biscuits	
100 g butter 75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.			150 g flour	
75 g icing sugar 10 g almonds Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.			100 g butter	
Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.			75 g icing sugar	
Jane made as many almond biscuits as she could, using the ingredients she had. Work out how many almond biscuits she made.			10 g almonds	
Work out how many almond biscuits she made.		Jane made as many al	mond biscuits as she could, using the inf	redients she had.
work out now many almond biscuits sne made.		We also set to see a set of a	dur en d'hiererite de me de	
		work out now many a	limond biscuits she made.	

(Total for Question 19 is 3 marks)

46

DO NOT WRITE IN THIS AREA

20 (a) Factorise 3f + 9

(b) Factorise $x^2 - 2x - 15$

(2)

(1)

(Total for Question 20 is 3 marks)

21 $q = \frac{p}{r} + s$

Make *p* the subject of this formula.

(Total for Question 21 is 2 marks)

DO NOT WRITE IN THIS ARE

22 A tin of varnish costs £15

A rectangular floor has dimensions 6 m by 11 m. The floor is going to be covered in varnish.

6 m

23 Frank, Mary and Seth shared some sweets in the ratio 4 : 5 : 7 Seth got 18 more sweets than Frank.

Work out the total number of sweets they shared.

(Total for Question 23 is 3 marks)

24 *PQR* is a right-angled triangle.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Work out the size of the angle marked x. Give your answer correct to 1 decimal place.

(Total for Question 24 is 2 marks)

49
DO NOT WRITE IN THIS AREA

Here are the first four terms of an arithmetic sequence.
6 10 14 18
(a) Write an expression, in terms of n , for the n th term of this sequence
The <i>n</i> th term of a different arithmetic sequence is $3n + 5$
(b) Is 108 a term of this sequence? Show how you get your answer.

26 Axel and Lethna are driving along a motorway.

They see a road sign. The road sign shows the distance to Junction 8 It also shows the average time drivers take to get to Junction 8

To Junction 8	
30 miles	
26 minutes	

The speed limit on the motorway is 70 mph.

Lethna says

"We will have to drive faster than the speed limit to drive 30 miles in 26 minutes."

Is Lethna right? You must show how you get your answer.

(Total for Question 26 is 3 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

27 The table shows some information about the foot lengths of 40 adults.

Foot length (f cm)	Number of adults
$16 \leqslant f < 18$	3
$18 \leqslant f < 20$	6
$20 \leqslant f < 22$	10
$22 \leqslant f < 24$	12
$24 \leqslant f < 26$	9

- (a) Write down the modal class interval.
- (b) Calculate an estimate for the mean foot length.

(3) cm

(1)

(Total for Question 27 is 4 marks)

28 Triangles ABD and BCD are right-angled triangles.

Work out the value of *x*. Give your answer correct to 2 decimal places.

(Total for Question 28 is 4 marks)

29 Here is a probability tree diagram. game A game B win 0.3 game B win game A 0.2 0.7 lose game B win 0.3 0.8 game B lose game A 0.7 lose game B Work out the probability of winning both games. (Total for Question 29 is 2 marks) **TOTAL FOR PAPER IS 80 MARKS**

DO NOT WRITE IN THIS ARE

	Notes	cao	cao	cao	for 5.5225 or 1.8	cao	0e	Starts process eg. Lists at least 2 multiples from 9,18,27,36,45 or lists at least 2 factors from 1, 2, 4, 5, 8, 10, 20, 40	Continues process eg. gives a set of numbers whose sum is greater than 20 but less than 30 but numbers may not all be appropriate factors/multiples	Gives 3 numbers that meet all the criteria
		B1	B1	B1	M1	A1	B1	P1	P1	A1
	Answer	6.66	0.4375	27 or 64	7.3225		2/3	eg. 1, 2, 18		
:2F	Working									
Paper 1MA1	Question	1	2	3	4		5	9		

Paper 1MA	1:2F			
Question	Working	Answer		Notes
7		5 <u>3</u> 64	Pl	for interpreting information e.g. recognising that the shaded area = $3 / 1 1 / 1 1$
				$-+ \begin{pmatrix} -x- \\ 4 \end{pmatrix} + \begin{pmatrix} -x-x- \\ 4 \end{pmatrix}$ or adding in lines to diagram to show
			A1	64ths cao
×			C1	Any one correct statement eg. No key, y axis label, 4 missing on y axis axis
			č	
			C1	Any 2 nd correct statement
			C1	Any 3 rd correct statement
6		13	M1	Puts numbers in order or clear attempt to find 5 th number or
			A1	(9 + 1)/2 or selects 11
10 (a)		p + c	B1	
(q)		14	M1	adds 5 to both sides of equation
		ω	A1	oe
11 (a)		eg. $2 \times 5 = 10$	B1	example given
(q)		explanation	PI	two prime numbers identified
			C1	conclusion which also shows at least one calculation with prime numbers or identifies one of the prime numbers as 2.

Paper 1MA1	1: 2F			
Question	Working	Answer		Notes
12 (a)		graph	C1	introduce a scale for the y axis
			C1	plots at least 2 points correctly
			C1	fully correct and complete graph
(q)		15 miles	M1	reads off graph eg 20 km = $12-13$ miles or 15 miles = 24 km or
		(supported)	C1	uses table states 15 miles (24 km) with appropriate evidence
13		shown	B1	ABC = 80
			M1	$180 - 80^{\circ} - 50^{\circ}$
			A1	ACB = 50
			C1	statement that since $ACB = CAB = 50^{\circ}$ with reasons eg <u>Vertically</u> <u>opposite</u> angles are equal, <u>Angles</u> in a <u>triangle</u> add up to <u>180°</u> . The <u>exterior angle</u> of a triangle is <u>equal</u> to the sum of the <u>interior</u> <u>opposite angles</u> ; Base <u>angles</u> of an <u>isosceles</u> triangle are <u>equal</u> .
14		13.9	P1	finds the volume of a cuboid eg $50 \times 40 \times 60$ (=120000)
			P1	finds 35% of the oil from the cuboid eg 120000 × 0.35 oe $(=42000)$
			P1	removes 35% of oil from cuboid eg 120000 – 42000 (=78000)
			P1	division to find missing side length eg 78000 \div (80×70) or 13.928
			A1	for answer to an appropriate degree of accuracy eg (13.9 or 14 or 10)

	Notes	11 interpret information eg use the scale	1	I1 Starts to list factors of writes at least one number in terms of prime factors or identifies a common factor other than 1	l cao	1 for a process (for at least two boxes) of division of price by quantity or division of quantity by price or a complete method to find price of same quantity or to find quantity of same price	1 for a complete process to give values that can be used for comparison of all 3 boxes	 for 5 kg and correct values that can be used for comparison for all 3 boxes and a comparison of their values 	fl process of substitution demonstrated eg $5 \times 3 + 2 \times -2$.l cao
	Answer	22.5 M	A	12 M	V	5 kg (supported)	P	0	11 M	P
1:2F	Working					£ per kg: 1.89÷2 = 0.945 (94.5); 4.30÷5 = 0.86 (86); 8 46÷9 = 0.94 (94)	kg per £: 2+1.89 = 1.058(2); 5+4.30 = 1.162(79):	9÷8.46 = 1.0638(297) Price per 90 kg: 1.89×45 = 85.05; 4.30×18 = 77.4(0); 8.46×10 = 84.6(0)		
Paper 1MA1	Question	15		16		17			18	

Paper 1MA	N1: 2F			
Question	Working	Answer		Notes
19		720	P1	attempt to find the maximum biscuits for one of the ingredients e.g. $5000 \div 15 (=33.3)$ or $2500 \div 75 (=33.3)$ or $3000 \div 100 (=-30)$ or $320 \div 10 (=-32)$.
			P1	for identifying butter as the limiting factor or 30×24 (=720) seen
			$\mathbf{A1}$	
20 (a)		3(f+3)	B1	cao
(q)		(x-5)(x+3)	M1	for $(x \pm 5)(x \pm 3)$
			A1	cao
21		p=qr-sr	M1	for multiplying all 3 terms by r or isolating p/r term
			A1	oe
22 (a)		66	P1	for the process of finding an area eg 6×11 (=66)
			P1	(dep on area calculation) for the process of working out the number of tins eg " 66 " + 12 (=5.5 or 6 tins)
			P1	for the process of working out the cost eg "6" tins \times £15
			$\mathbf{A1}$	cao
(q)		reason	C1	she might need to buy more tins

Paper 1MA1:	: 2F					
Question	Working	Answer			Notes	
23		96	Pl	a strategy to start to so	lve the problem eg 18 \div	- (7 -4) (=6)
			P1	for completing the pro	cess of solution eg "6"	\times (4 + 5 + 7)
			A1	cao		
24		20.9	M1	correct recall of appro	priate formula eg sin x	$=\frac{5}{14}$
			A1	for 20.9(248)		
25 (a)		4n+2	M1	start to deduce nth terr $k \neq 2$	n from information give	sn eg $4n+k$ where
			A1	cao		
(q)		No (supported)	M1	start to method that co operations	uld lead to a deduction	eg uses inverse
			C1	for a convincing argur an integer	nent eg 34 is 107 so NO); (108−5)÷3 is not
26		conclusion	P1	$30 \div 70 \ (=0.428)$	26 ÷ 60 (=0.4333)	30 ÷ 26 (=1.153)
		(supported)	P1	60 × "0.428…"	70 imes "0.4333"	60× "1.153…"
			C1	for conclusion linked	to 25.7 mins, 30.3 miles	or 69.2 mph

Paper 1MA	l: 2F			
Question	Working	Answer		Notes
27 (a)		$22 \le f < 24$	B1	
(q)		21.9	M1	$x \times f$ using midpoints
			M1	(dep on previous mark) " $x \times f$ " $\div 40$
			A1	accept 22 if working seen
28		9.54	P1	$10^2 - 5^2 (=75)$
			P1	$(75) + 4^{2} (=91)$
			P1	$\sqrt{(10^2 - 5^2 + 4^2)}$
			A1	9.53 – 9.54
29		0.06	M1	for 0.2 and 0.3
			A1	cao

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015 62

•	Keep an eye on the time. Try to answer every question. Check your answers if you have time at the end.	
		Turn over 🕨
S48575A ©2015 Pearson Education Ltd. 6/4/7/4/6/6/6/	S 4 8 5 7 5 A 0 1 2 0	PEARSON
Pearson Edex	ccel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SA © Pearsor	Ms) - Issue 2 - June 2015 63 Education Limited 2015

Surname		Other names	
earson Edexcel evel 1/Level 2 GCSE (9 - 1)	Centre Number		Candidate Number
Mathemat Paper 3 (Calculator)	tics	Fou	undation Tie
Mathemat Paper 3 (Calculator)	tics	Fou	Indation Tie

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** guestions.
- Answer the questions in the spaces provided - there may be more space than you need.
- Calculators may be used.
- If your calculator does not have a π button, take the value of π to be 3.142 unless the question instructs otherwise.
- Diagrams are **NOT** accurately drawn, unless otherwise indicated.
- You must **show all your working out**.

Information

- The total mark for this paper is 80
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

Read each question carefully before you start to answer it

	Answer ALL questions.
	Write your answers in the spaces provided.
	You must write down all the stages in your working.
	Write 2148 correct to the nearest 100
_	(Total for Question 1 is 1 mark)
	(a) Simplify $8x - 3x + 2x$
	(b) Simplify $4y \times 2y$
	(1)
	(Total for Question 2 is 2 marks)
	There are 6760 people at at a rugby match. 3879 of the people are men. 1241 of the people are women.
	$\frac{1}{4}$ of the children are girls.
	Work out how many boys are at the rugby match.
	(Tatal for Orestion 2 is 2 montro)

Here is a grid showing the points A, B and C. 4

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

5

The pie chart gives information about the 76 students in the same four Year 11 classes at Trowton School.

11D 11D boys 11A boys 11C girls 11A boys 11C boys 11A girls 11B girls 11B boys

Number of students in Year 11 of Trowton School

Tolu says,

"It is more difficult to find out the numbers of students in each class from the pie chart than from the bar chart."

(c) Is Tolu correct? You must give a reason for your answer.

(1)

(Total for Question 6 is 5 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

7 Here is a number machine. input \longrightarrow $\times 3$ -4 \longrightarrow output	
(a) Work out the output when the input is 4	
	(1)
(b) Work out the input when the output is 11	(1)
	(2)
(c) Show that there is a value of the input for which the input and the output have the same value.	
	(2)
(Total for Question 7 is 5	marks)

1 yard is 36 inches. 8 10 cm is an approximation for 4 inches. Work out an approximation for the number of cm in 2 yards. (Total for Question 8 is 3 marks) Work out 234% of 150 9 (Total for Question 9 is 2 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

10	Here are four numbers. Write these numbers in ord Start with the smallest num	0.43 der of size. nber.	$\frac{3}{7}$	43.8%	$\frac{7}{16}$		DO NOT WRITE IN THIS AREA
	Here is a list of five number 14 From the list, (i) write down the prime r	ers. 15 number,		(1 16	otal for Que	stion 10 is 2 marks) 18	DO NOT WRITE IN THIS AREA
	(ii) write down the square	number.		[]	<u>`otal for Que</u>	stion 11 is 2 marks)	DO NOT WRITE IN THIS AREA

12 Here is a star shape.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

The star shape is made from a regular hexagon and six congruent equilateral triangles.

The area of the star shape is 96 cm^2 .

Work out the area of the regular hexagon.

cm²

(Total for Question 12 is 2 marks)

14 The total weight of 3 tins of beans and 4 jars of jam is 2080 g. The total weight of 5 tins of beans is 2000 g. Work out the weight of 1 tin of beans and the weight of 1 jar of jam. tin of beans......g DO NOT WRITE IN THIS AREA jar of jam......g (Total for Question 14 is 4 marks) DO NOT WRITE IN THIS AREA

15 There are 25 boys and 32 girls in a club.

 $\frac{2}{5}$ of the boys and $\frac{1}{2}$ of the girls walk to the club.

The club leader picks at random a child from the children who walk to the club.

Work out the probability that this child is a boy.

(Total for Question 15 is 3 marks)

XXX (
	16 Change 72 low /h into m/a	
	10 Change /2 km/n mto m/s.	
E E		
5		
5		n
×		(Total for Question 16 is 3 marks)
\otimes		
×		
×		
\otimes		
81		
\otimes		
\otimes		
\otimes		
§ (

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015

(2)

Magda says,

DO NOT WRITE IN THIS A

DO NOT WRITE IN THIS ARE

(2)

(Total for Question 17 is 4 marks)

18 The diagram shows a trapezium *ABCD* and two identical semicircles.

The centre of each semicircle is on DC.

Work out the area of the shaded region. Give your answer correct to 3 significant figures.

77

(Total for Question 18 is 4 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Asif is	going on holiday to Turkey.		
The ex	change rate is $f1 = 3.5601$ lira		
Asif ch	nanges f 550 to lira		
(a) Wo Giv	ork out how many lira he should get. ve your answer to the nearest lira.		
		(2)	lir
Asif se The sh	ees a pair of shoes in Turkey. oes cost 210 lira.		
Asif do He use	bes not have a calculator. As $\pounds 2 = 7$ lira to work out the approximate cost of the shoes in pounds.		
(b) Us	e $\pounds 2 = 7$ lira to show that the approximate cost of the shoes is $\pounds 60$		
		(2)	
(c) Is u	using $\pounds 2 = 7$ lira instead of using $\pounds 1 = 3.5601$ lira a sensible start to Asif's method work out the cost of the shoes in pounds?	(2)	
Yo	u must give a reason for your answer.		
		(1)	
	_	(1)	
	(Total for Question 19 is 5 mar	·ks)	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

20 Here are the first six terms of a Fibonacci sequence.

1 1 2 3 5 8

The rule to continue a Fibonacci sequence is,

the next term in the sequence is the sum of the two previous terms.

(a) Find the 9th term of this sequence.

(1)

(2)

a = _____

(3)

b =

(Total for Question 20 is 6 marks)

The first three terms of a different Fibonacci sequence are

a b a+b

(b) Show that the 6th term of this sequence is 3a + 5b

Given that the 3rd term is 7 and the 6th term is 29,

(c) find the value of *a* and the value of *b*.

Pearson Edexcel Level I/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015

DO NOT WRITE IN THIS

DO NOT WRITE IN THIS ARE

AREA

5

Ē

Z

Ŵ

DO NOT

DO NOT WRITE IN THIS AREA

10 NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

These are the two ways he can pay for the water he uses.

Water Meter

A charge of £28.20 per year

plus

91.22p for every cubic metre of water used

1 cubic metre = 1000 litres

No Water Meter

A charge of £107 per year

Henry uses an average of 180 litres of water each day.

Use this information to determine whether or not Henry should have a water meter.

(Total for Question 22 is 5 marks)

O NOT WRITE IN THIS A

%

(2)

23 A and B are two companies.

The table shows some information about the sales of each company and the number of workers for each company in 2004 and in 2014

	Com	ipany A	Compa	nny B
	Sales (£ millions)	Number of workers	Sales (£ millions)	Number of workers
2004	320	2960	48	605
2014	388	3200	57	640

(a) Work out the percentage increase in sales from 2004 to 2014 for Company A.

(b) Which company had the most sales per worker in 2014, Company A or Company B? You must show how you get your answer.

(3)

(Total for Question 23 is 5 marks)

TOTAL FOR PAPER IS 80 MARKS

Paper 1MA	A1: 3F			
Question	Working	Answer		Notes
1		2100	B1	
2 (a)		7x	B1	
(q)		8322	B 1	
Э		1230	P1	for start to process eg. 6760 – 3879 – 1241 (=1640)
			P1	for use of fraction eg. "1640"÷4 or $1 - \frac{1}{4} \left(= \frac{3}{4} \right)$
			Al	
4 (a)		(3, 5)	B1	
(q)		Plotted	B1	
(c)		eg. (5,6) plotted	B1	
5	$(500 - 230 - 92 - 40) \div 2$	69p	P1	for start to process eg. $230 + 92$ or $500 - 40$
			P1	for complete process
			A1	for 69p or £0.69

Paper 1MA	v1: 3F			
Question	Working	Answer		Notes
6 (a)		<u>15</u> 29	M1	for $\frac{15}{a}$ where $a > 15$ or $\frac{b}{29}$ where $b < 29$ or correct fraction for girls from a different class
			A1	
(q)	11A +1G, 11B -1G 11C -1G, 11D + 1G	No + reason	M1	For complete method to find the sum of the signed differences in numbers of boys and girls or the totals of boys and girls in year 11
			C1	'No' with correct argument eg. there are 38 boys and 38 girls
(c)		Yes + reason	C1	'Yes' with eg as many calculations using the angles would be required oe
7 (a)		8	B1	
(q)	11 + 4 = 15 $15 \div 3 = 5$	S	M1 A1	Start of method
(c)	in 0 1 2 3 4 out -4 -1 2 5 8	7	M1	For complete method that leads to answer e.g table of values or $x = 3x - 4$
			C1	For 2 or for statement that the equation has a unique solution
8		180	M1	For start to method e.g. $36 \div 4(=9)$ or 2×36
			M1	For complete method to find no of cm in 1 yard or in 2 yards
6		351	A1 M1	for 2.34 × 150 oe
1			A1	

Que 10		1.01			
10	estion	Working	Answer		Notes
		0.43, 0.428, 0.438. 0.4375	$\frac{3}{7}$, 0.43, $\frac{7}{16}$, 43.8%,	M1 A1	Converts numbers to common format e.g decimals to at least 3 d.p.
11	(i)		17	B1	
	(ii)	1	16	B1	
12			48	P1 A1	For start to process eg.96 ÷ 12 or 96 ÷ 2 cao
13	(a)(i)		33	B1	The sum of the angles on a straight line is 180°
	(ii)		The sum of the angles on a straight line is 180	B1	
	(q)	$(360 - 33 - 145) \div 2$	91	P1 A1	For a correct process to find angle ZWX
14		$2000 \div 5 = 400$	400, 220	B1	for 400 (weight of beans)
		$2080 - 3 \times 400 = 880$ $880 \div 4$		P1 P1 A1	Process to find total weight of 4 jars of jam Process to find weight of 1 jar of jam
15		$25 \div 5 \times 2 = 10$ $32 \div 2 = 16$	$\frac{10}{26}$	P1	Process to find number of boys walking and number of girls walking
		$\frac{10}{10+16}$	04	P1 A1	Complete process to find probability $\frac{10}{26}$ oe
Paper 1MA	A1: 3F				
-----------	--	--------------------	----------------	---	
Question	Working	Answer		Notes	
16		20	M1	for conversion of km to metres or hours to minutes	
			M1	for conversion of hours to seconds	
			A1	cao	
17 (a)	2x + 2x - 2y + 2x + 2x - 2y	Shown	M1 C1	For method to acquire correct inside lengths For completion	
(q)	8 <i>x</i> and 4 <i>y</i> are multiples of 4 Their difference must be a multiple of 4 Or $4(2x - v)$ is a multiple of 4	Shown	M1 C1	For method to start argument eg. factorise expression For complete argument	
18		252	P1 M1 P1	For start to process eg. radius = $12 \div 4$ (=3) Method to find area of trapezium or semicircle or circle Process to find area of the shaded region	
			A1	251.7 – 252	
19 (a)	550×3.5601	1958	M1 A1	550 × 3.5601	
(q)	$210 \div 7 \times 2 = 30 \times 2$ Or	Shown	M1	For correct method to convert cost in UK to lira or vice versa, using Asif's approximation	
	$60 \div 2 = 30$ and $30 \times 7 = 210$		C1	Shown with correct calculations	
(c)		Correct evaluation	C1	For an evaluation e.g. It is a sensible start to the method because he can do the calculations without a calculator and 3.5 lira to the \pounds is a good approximation	

Paper	- 1MA	1: 3F			
Ques	stion	Working	Answer		Notes
20 ((a)	8, 13, 21,	34	B1	cao
-	(þ)	a,b,a+b,a+2b,2a+3b	Shown	M1 C1	Method to show by adding pairs of successive terms $a + 2b,2a + 3b$ shown
<u> </u>	(c)	3a + 5b = 29	a = 3	P1	Process to set up two equations
		a + b = 7	b=4	P1	Process to solve equations
		3a + 3b = 21 b = 4, a = 3		A1	
21 ((a)	Draws LOBF	No + reason	M1	Interpret question eg. draw line of best fit
		Finds ht÷base = $\frac{85 - 20}{0 - 25} = -2.6$		M1	Start to test e.g. gradient e.g. $\frac{85 - 20}{0 - 25} = -2.6$
<u> </u>	(q)		The LOBF would have to be used outside the data	C1 C1	Gradient within range ±(2 - 3) and 'no' Convincing explanation
22			Have a water meter	P1	Process to find number of litres eg. 180 ÷ 1000
			(from working with	P1	Full process to find cost per day
			correct figures)	P1	Full process to find total cost of water used per year (accept
				P1	Full process with consistent units for total cost of water
				A1	Correct decision from correct figures (88.13154 or correct figure for their time period)

Paper 1MA	1:3F			
Question	Working	Answer		Notes
23 (a)	$\frac{388 - 320}{320} \times 100 =$	21.25	M1	For a complete method
			A1	21.25%
(q)	A 388 (million) ÷ 3200 = £0.12125 million (£121 250) B 57(million) ÷ 640 = £0.080655 million (£80067 50)	Company A + evidence	M1 A1	Method to find sales/person for A or B for 2014 £121 250 or £89062.50
			C1	Company A with £121 250 and £89062.50

• • •	Read each question carefully before you start to answer it. Keep an eye on the time. Try to answer every question. Check your answers if you have time at the end.	
S48572A ©2015 Pearson Education Ltd.		Turn over ► PEARSON
6/4/7/7/4/6/6/ Pearson Ede>	cel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (S © Pearse	GAMs) - Issue 2 - June 2015 on Education Limited 2015

Surname		Other names
earson Edexcel evel 1/Level 2 GCSE (9 - 1)	Centre Number	Candidate Number
Mathemat	tics	
Mathemat Paper 1 (Non-Calcula	t iCS ator)	
Mathemat Paper 1 (Non-Calcula	tics ator)	Higher Tie
Mathemat Paper 1 (Non-Calcula Sample Assessment Materials – Issue 2	tics ator)	Higher Tie Paper Reference

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Calculators may not be used.
- Diagrams are **NOT** accurately drawn, unless otherwise indicated.
- You must **show all your working out**.

Information

- The total mark for this paper is 80
- The marks for **each** question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

Answer A	LL questions.
----------	---------------

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 Work out 6.34×5.2

(Total for Question 1 is 3 marks)

2 Expand and simplify (m + 7)(m + 3)

(Total for Question 2 is 2 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

3

AE, DBG and CF are parallel. DA = DB = DC. Angle EAB = angle BCF = 38°

Work out the size of the angle marked *x*. You must show your working.

(Total for Question 3 is 3 marks)

4	Gary drove from London to Sheffield. It took him 3 hours at an average speed of 80km/h
	Lyn drove from London to Sheffield.
	Assuming that Lyn drove along the same roads as Gary and did not take a break,
	(a) work out Lyn's average speed from London to Sheffield.
	(b) If Lyn did not drive along the same roads as Gary, explain how this could affect your
	answer to part (a).
	(1)
	(I) (Total for Question 4 is 4 marks)
	(Total for Question 4 is 4 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

5 In a company, the ratio of the number of men to the number of women is 3:2

40% of the men are under the age of 25 10% of the women are under the age of 25

What percentage of all the people in the company are under the age of 25?

.....%

(Total for Question 5 is 4 marks)

6 The plan, front elevation and side elevation of a solid prism are drawn on a centimetre grid.

	fron	t eleva	ition		side	eleva	tion	
		plan						

In the space below, draw a sketch of the solid prism. Write the dimensions of the prism on your sketch. DO NOT WRITE IN THIS AREA

(Total for Question 6 is 2 marks)

7 There are 1200 students at a school.

Kate is helping to organise a party. She is going to order pizza.

Kate takes a sample of 60 of the students at the school. She asks each student to tell her **one** type of pizza they want.

The table shows information about her results.

Pizza	Number of students
ham	20
salami	15
vegetarian	8
margarita	17

Work out how much ham pizza Kate should order.

Write down any assumption you make and explain how this could affect your answer.

(Total for Question 7 is 3 marks)

95

DO NOT WRITE IN THIS AREA

Work out the value of $(9 \times 10^{-4}) \times (3 \times 10^{7})$ 9 Give your answer in standard form. DO NOT WRITE IN THIS AREA (Total for Question 9 is 2 marks) 10 (a) Write down the value of $64^{\frac{1}{2}}$ (1) (b) Find the value of $\left(\frac{8}{125}\right)^{-\frac{2}{3}}$ DO NOT WRITE IN THIS AREA (2) (Total for Question 10 is 3 marks) DO NOT WRITE IN THIS AREA

One uranium atom has a mass of 3.95×10^{-22} grams.	
(a) Work out an estimate for the number of uranium atoms in 1 kg of urani	um.
	(3)
(b) Is your answer to (a) an underestimate or an overestimate? Give a reason for your answer.	
	(1)
(Total for Questi	on 11 is 4 marks)
(Total for Questi	on 11 is 4 marks)
(Total for Questi	on 11 is 4 marks)
	on 11 is 4 marks)
	on 11 is 4 marks)

area **DO NOT WRITE IN THIS AREA** Find the pressure extered by a force of 900 newtons on an area of 60 cm^2 . Give your answer in newtons/m². newtons/m² (Total for Question 12 is 2 marks) 13 Rectangle ABCD is mathematically similar to rectangle DAEF. DO NOT WRITE IN THIS AREA -10cm-E B 4 cm \overline{F} D CAB = 10 cm. AD = 4 cm. Work out the area of rectangle DAEF. DO NOT WRITE IN THIS AREA (Total for Question 13 is 3 marks)

force

12 Pressure =

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015

	18	18	18	19	20	20	22	23	23	23	26	27	28	28
(a) D	raw a l	oox plo	t for th	is info	ormatio	n.								
													(3	
Sam	plays ir	n the sa	me 15	games	s of bas	ketbal	1.						())
(b) W	ange of /ho is r ou mus	t these nore co st give	points i onsisten a reason	is 20 it at so n for y	coring p your an	ooints, swer.	Sam o	r Ben?						
													(2	
									fotal fo	or Que	estion 1	14 is 5	(2 marks	 () ()
								(1)	fotal fo	or Que	estion 1	14 is 5	(2 marks))))
								(1	fotal fo	or Que	estion 1	<u>14 is 5</u>	(2 marks))))

15 In a shop, all normal prices are reduced by 20% to give the sale price. The sale price of a TV set is then reduced by 30%. Mary says, "30 + 20 = 50, so this means that the normal price of the TV set has been reduced by 50%." Is Mary right? You must give a reason for your answer. (Total for Question 15 is 2 marks) **16** Factorise fully $20x^2 - 5$ (Total for Question 16 is 2 marks) $a+3 = \frac{2a+7}{r}$ 17 Make *a* the subject of (Total for Question 17 is 3 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

5

18	Solid A and solid B are mathematically similar.
	The ratio of the surface area of solid A to the surface area of solid B is 4:9

The volume of solid **B** is 405 cm^3 .

Show that the volume of solid A is 120 cm^3 .

(Total for Question 18 is 3 marks)

19 Solve $x^2 > 3x + 4$

(Total for Question 19 is 3 marks)

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015

22 Bhavna recorded the lengths of time, in hours, that some adults watched TV last week.

The table shows information about her results.

Length of time (<i>t</i> hours)	Frequency
$0 \leqslant t < 10$	6
$10 \leq t < 15$	8
$15 \leqslant t < 20$	15
$20 \leqslant t < 40$	5

Bhavna made some mistakes when she drew a histogram for this information.

105

DO NOT WRITE IN THIS AREA

24 John has an empty box.

He puts some red counters and some blue counters into the box.

The ratio of the number of red counters to the number of blue counters is 1:4

Linda takes at random 2 counters from the box.

The probability that she takes 2 red counters is $\frac{6}{155}$

How many red counters did John put into the box?

(Total for Question 24 is 4 marks)

25 A(-2, 1), B(6, 5) and C(4, k) are the vertices of a right-angled triangle *ABC*. Angle *ABC* is the right angle.

Find an equation of the line that passes through *A* and *C*. Give your answer in the form ay + bx = c where *a*, *b* and *c* are integers.

(Total for Question 25 is 5 marks)

TOTAL FOR PAPER IS 80 MARKS

Paper 1MA1	1: 1H			
Question	Working	Answer		Notes
1		32.968	M1	for correct method (condone one error)
			A1	for digits 32968
			A1	ft (dep M1) for correct placement of decimal pt
2		$m^2 + 10m + 21$	M1	for at least 3 terms out of a maximum of 4 correct from expansion
			A1	
3		152	M1	Start to method $ABD = 38^{\circ}$ and BAD or DBC or $DCB = 38^{\circ}$
			M1	<i>ADB</i> or <i>BDC</i> = $180 - 2 \times 38$ (=104)
			A1	for 152 with working
4 (a)		48	P1	start to process eg. 3×80 (=240)
			Pl	$240^{\circ} \div 5^{\circ}$
			A1	
(q)			C1	eg. she may drive a different distance and therefore her average speed could be different

Paper 1MA1	l: 1H			
Question	Working	Answer		Notes
5		28	Process to start	to solve problem eg. $\frac{3}{5} \times 40$ or
			divide any numl	ber in the ratio 3:2
			Second step in p	process to solve problem eg. $\frac{2}{5} \times 10$ or find number
			ot males/temale for complete pro	s under 25 for candidate's chosen number ocess
			1	
6		Correct sketch	l interprets diagra dimensions	am eg. draw a solid shape with at least two correct
			l draws correct pr	rism with all necessary dimensions.
7		400	Start to process	eg. 1200 ÷ 60
			1 400 oe (accept r people per pizza	number of whole pizzas eg. $400 \div 4 = 100$ with 4 a)
			1 Eg. Assumption not be all 1200 j they don't, assu more/fewer pizz	that sample is representative of population – it may people are going to the party – need less pizza if me 4 people per pizza – if different may need 2as

Paper 1MA	VI: 1H			
Question	Working	Answer		Notes
8		x = 21, y = 50	P1	process to start solving problem eg. form an appropriate equation
			P1	complete process to isolate terms in x
			A1	for $x = 21$
			P1	complete process to find second variable
			A1	y = 50
6		$2.7 imes 10^4$	M1	For evidence of a correct method eg. $27 \times 10^{4+7}$
			$\mathbf{A1}$	
10 (a)		∞	B1	
(q)		$\frac{25}{2}$ oe	M1	for correct first step
		4	$\mathbf{A1}$	
11 (a)		$2.5 imes 10^{24}$	Pl	process to estimate or divide
			P1	a complete process eg. (1×10^3) \div (4×10^{-22})
			A1	
(q)		Under-estimate	C1	ft from (i) Eg. under estimate as number rounded up but in denominator of fraction

Paper 1MA	d: 1H			
Question	Working	Answer		Notes
12		150 000	IM	$60 \div 100^2$ or $900 \div 60$ or $900 \div60$ "
			A1	
13		6.4	P1	Start to process e.g find scale factor (0.4) or $\frac{AE}{4} = \frac{4}{10}$
			Pl	Complete process to find area
			A1	
14 (a)	Median = 22; $lq = 18$; $uq = 26$	Box plot	C1	Start to interpret information eg. one of median, lq, uq correct
			C1	Starts to communicate information eg. box plot with box, whiskers and at least 3 of median, lq, uq, min and max correct
			C1	Correct box plot
(q)		Ben with reason	M1	interpret information eg ft from box plot to find iqr (8) or range (11)
			C1	ft eg. Ben with lower iqr (8) and range (11)
15		No with reason	CI	Starts to formulate reason eg. No with partial explanation or 0.8×0.7 or starts to use figures
			C1	No with full explanation eg. $0.8 \times 0.7 = 0.56$ so only 44% reduction
16		5(2x+1)(2x-1)	M1	for $5(4x^2 - 1)$
			A1	

Paper 1MA	1:1H			
Question	Working	Answer		Notes
17		$a = \frac{7 - 3r}{2}$	M1	Remove fraction and expand brackets
		7 – 1	M1	Isolate terms in <i>a</i>
			A1	
18		Given result	M1	For length scale factor eg $\sqrt{\frac{4}{9}}$ or 120 : 405
			M1	$\left(\sqrt{\frac{4}{9}}\right)^3 \times 405 \text{ or } 2^3 : 3^3 \text{ (from 120 : 405)}$
			A1	120 from correct arithmetic or conclusion relating 2^3 : 3^3 with 2^2 : 3^2 with correct working
19		x > 4, x < -1	M1	rearrange quadratic and factorise
			M1	critical values of 4 and -1 found
			A1	
20 (a)		(-2, -2)(-6, -2)	M1	Shape drawn in correct orientation
		(,) (,)	A1	
(q)		Enlargement sf -0.5 centre (0,0)	Cl	

Paper 1MA	1: 1H			
Question	Working	Answer		Notes
21 (a)		25	C1	For interpretation eg area equated to 1750m
			P1	Process to solve equation
			A1	
(q)		Description	C1	Start to interpret graph eg. describe or give acceleration for one stage of the journey or state that acceleration is constant in all 3 parts
			C1	Describe acceleration for all stages of the journey or give acceleration for all 3 stages $(1.25 \text{ m/s}^2; 0 \text{ m/s}^2; -0.625 \text{ m/s}^2)$
22			CI	C1 for frequencies used for heights or areas not proportional to frequencies
			C1	C1 for 2 nd mistake - final bar of wrong width
23		Given result	CI	Correct first step towards simplifying expression eg. $\frac{\sqrt{2}}{\sqrt{2}+1}$
			C1	Correct step to rationalise denominator
			C1	Conclusion to given result

QuestionWorkingAnswerNotes24 25 P1For process to start to solve. Eg use of x and $4x$ or $x/5x$ and $4x/5x$ 24 25 P1For process to form equation $eg \frac{x}{5x} \cdot \frac{x-1}{5x-1} = \frac{6}{155}$ 25P1Processes to eliminate fractions and reduce equation to linear form25 $3y - 4x = 11$ P1Process to start to solve problem eg. draw a diagram, find gradient25 $3y - 4x = 11$ P1Process to start to solve problem eg. draw a diagram, find gradient26 $9y - 4x = 11$ P1Process to start to solve problem eg. draw a diagram, find gradient27 $3y - 4x = 11$ P1Process to start to solve problem eg. draw a diagram, find gradient28 $3y - 4x = 11$ P1Process to start to solve problem eg. draw a diagram, find gradient29 $3y - 4x = 11$ P1Process to start to solve problem eg. draw a diagram, find gradient21 $3y - 4x = 11$ P1Process to start to solve problem eg. draw a diagram, find gradient25 $3y - 4x = 11$ P1Process to start to solve problem eg. draw a diagram, find gradient26 $3y - 4x = 11$ P1Process to start to solve problem eg. draw a diagram, find gradient27 $3y - 4x = 11$ P1Process to start to solve problem eg. draw a diagram, find gradient28 $3y - 4x = 11$ P1Process to start to solve problem eg. draw a diagram, find gradient29 $3y - 4x = 11$ P1Process to start to solve problem eg. draw a diagram, find gradient	Paper 1MA	1: 1H			
2425P1For process to start to solve. Eg use of x and 4x or x/5x and 4x/5x24P1Process to form equation $eg x x x^{-1} = \frac{6}{155}$ 25P1Process to eliminate fractions and reduce equation to linear form25A1A125 $3y-4x=11$ P126 $3y-4x=11$ P127 $9y-4x=11$ P128 $9y-4x=11$ P129 $9y-4x=11$ P129 $9y-4x=11$ P129 $9y-4x=11$ P129 $9y-4x=11$ P129 $9y-4x=11$ P129 $9y-4x=11$ P120 $9y-4x=11$ P121P1Process to start to solve problem eg. draw a diagram, find gradient26 $9y-4x=11$ P127P1Process to use gradients eg. find gradient of $BC(-2)$ 29P1Process to use gradients eg. find gradient of $BC(-2)$ 21P1Process to tind y coordinate of $C(9)$ 21P1Process to find equation of AC	Question	Working	Answer		Notes
P1Process to form equation $eg \frac{x}{5x} \times \frac{x-1}{5x-1} = \frac{6}{155}$ 25P1Processes to eliminate fractions and reduce equation to linear form $eg. 155x - 155 = 150x - 30$ 25A1A125 $3y - 4x = 11$ P1P1process to start to solve problem eg. draw a diagram, find gradient of $AB (0.5)$ 25P1Process to use gradients eg. find gradient of $BC (-2)$ 25P1Process to use gradients eg. find gradient of $BC (-2)$ 26P1Process to use gradients eg. find gradient of $BC (-2)$ 27P1Process to use gradients eg. find gradient of $BC (-2)$ 28P1Process to use gradients eg. find gradient of $BC (-2)$ 29P1Process to use gradients eg. find gradient of $BC (-2)$ 21P1Process to tind y coordinate of $C(9)$ 23P1Process to find y coordinate of $C(9)$ 24P1Process to find equation of AC	24		52	P1	For process to start to solve. Eg use of x and 4x or $x/5x$ and $4x/5x$
P1Processes to eliminate fractions and reduce equation to linear form eg. 155x - 155 = 150x - 3025A125 $3y - 4x = 11$ P1process to start to solve problem eg. draw a diagram, find gradient of AB (0.5)P1process to start to solve problem eg. find gradient of BC (-2)P1Process to use gradients eg. find gradient of BC (-2)P1Process to find y coordinate of C (9)P1Process to find equation of AC P1Process to find equation of AC				P1	process to form equation $eg \frac{x}{5x} \times \frac{x-1}{5x-1} = \frac{6}{155}$
25A1A1 25 $3y - 4x = 11$ P1process to start to solve problem eg. draw a diagram, find gradient 25 $9y - 4x = 11$ P1process to start to solve problem eg. find gradient 10 10 10 10 11 10 10 <				P1	Processes to eliminate fractions and reduce equation to linear form eg. $155x - 155 = 150x - 30$
25 $3y - 4x = 11$ P1process to start to solve problem eg. draw a diagram, find gradient of AB (0.5)P1Process to use gradients eg. find gradient of BC (-2)P1Process to use gradients of C (9)P1Process to find y coordinate of C (9)P1Process to find equation of AC A1A1				A1	
P1process to use gradients eg. find gradient of BC (-2)P1Process to find y coordinate of C (9)P1Process to find equation of AC A1	25		3y - 4x = 11	P1	process to start to solve problem eg. draw a diagram, find gradient of AB (0.5)
P1Process to find y coordinate of C (9)P1Process to find equation of AC A1				P1	process to use gradients eg. find gradient of BC (–2)
P1 Process to find equation of AC A1				P1	Process to find <i>y</i> coordinate of $C(9)$
A1				P1	Process to find equation of AC
				$\mathbf{A1}$	

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015

	Turn over 🕨
S48574A ©2015 Pearson Education Ltd.	PEARSON

Surname		Other names	
earson Edexcel evel 1/Level 2 GCSE (9 - 1)	Centre Number	Cand	idate Number
Mathemat Paper 2 (Calculator)	tics		<u> </u>
Mathemat Paper 2 (Calculator)	tics	Hi	gher Tieı
Mathemat Paper 2 (Calculator)	tics	Hi Paper f	gher Tier

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** guestions.
- Answer the questions in the spaces provided - there may be more space than you need.
- Calculators may be used.
- If your calculator does not have a π button, take the value of π to be 3.142 unless the question instructs otherwise.
- Diagrams are **NOT** accurately drawn, unless otherwise indicated.
- You must **show all your working out**.

Information

- The total mark for this paper is 80
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Koop on over on the time

DO NOT WRITE IN THIS ARE

0

Answer ALL questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

Frank, Mary and Seth shared some sweets in the ratio 4:5:7 1 Seth got 18 more sweets than Frank.

Work out the total number of sweets they shared.

(Total for Question 1 is 3 marks)

PQR is a right-angled triangle. 2

Work out the size of the angle marked *x*. Give your answer correct to 1 decimal place.

(Total for Question 2 is 2 marks)

Here are the first four terms of an arithmetic sequence. 3 6 10 14 18 (a) Write an expression, in terms of *n*, for the *n*th term of this sequence. The *n*th term of a different arithmetic sequence is 3n + 5(b) Is 108 a term of this sequence? Show how you get your answer.

(2)

(2)

(Total for Question 3 is 4 marks)

DO NOT WRITE IN THIS AREA

4 Axel and Lethna are driving along a motorway.

They see a road sign. The road sign shows the distance to Junction 8 It also shows the average time drivers take to get to Junction 8

> To Junction 8 30 miles 26 minutes

The speed limit on the motorway is 70 mph.

Lethna says

"We will have to drive faster than the speed limit to drive 30 miles in 26 minutes."

Is Lethna right? You must show how you get your answer.

(Total for Question 4 is 3 marks)

5 The table shows some information about the foot lengths of 40 adults.

Foot length (f cm)	Number of adults
$16 \leqslant f < 18$	3
$18 \leqslant f < 20$	6
$20 \leqslant f < 22$	10
$22 \leqslant f < 24$	12
$24 \leqslant f < 26$	9

(a) Write down the modal class interval.

(b) Calculate an estimate for the mean foot length
--

(3) cm

(1)

(Total for Question 5 is 4 marks)

123

8 In a box of pens, there are

124

three times as many red pens as green pens and two times as many green pens as blue pens.

For the pens in the box, write down the ratio of the number of red pens to the number of green pens to the number of blue pens.

(Total for Question 8 is 2 marks)

9 *ABCD* is a rectangle. *EFGH* is a trapezium.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

All measurements are in centimetres. The perimeters of these two shapes are the same.

Work out the area of the rectangle.

(Total for Question 9 is 5 marks)

The account pays compound interest at an annual rate of

2.5% for the first year

x% for the second year

x% for the third year

There is a total amount of £2124.46 in the savings account at the end of 3 years.

(a) Work out the rate of interest in the second year.

Katy goes to work by train.

The cost of her weekly train ticket increases by 12.5% to £225

(b) Work out the cost of her weekly train ticket before this increase.

.....

(2)

(4)

(Total for Question 10 is 6 marks)

£

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

11

S and T are points on the circumference of a circle, centre O. PT is a tangent to the circle. SOP is a straight line. Angle $OPT = 32^{\circ}$

Work out the size of the angle marked *x*. You must give a reason for each stage of your working.

(Total for Question 11 is 4 marks)

12 A and B are two sets of traffic lights on a road.

The probability that a car is stopped by lights A is 0.4

If a car is stopped by lights A, then the probability that the car is **not** stopped by lights B is 0.7

If a car is **not** stopped by lights A, then the probability that the car is **not** stopped by lights B is 0.2

(a) Complete the probability tree diagram for this information.

(2)

Mark drove along this road. He was stopped by just one of the sets of traffic lights.

(b) Is it more likely that he was stopped by lights A or by lights B? You must show your working.

(3)

(Total for Question 12 is 5 marks)

DO NOT WRITE IN THIS AREA

13 d is inversely proportional to c

When c = 280, d = 25

Find the value of *d* when c = 350

d =

(Total for Question 13 is 3 marks)

14 Prove algebraically that

 $(2n + 1)^2 - (2n + 1)$ is an even number

for all positive integer values of *n*.

(Total for Question 14 is 3 marks)

(Total for Question 15 is 2 marks)

16 Show that $\frac{1}{6x^2 + 7x - 5} \div \frac{1}{4x^2 - 1}$ simplifies to $\frac{ax + b}{cx + d}$ where a, b, c and d are integers.

(Total for Question 16 is 3 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Work out the length of arc *AB*. Give your answer correct to 3 significant figures.

cm

(Total for Question 17 is 2 marks)

18 $m = \frac{\sqrt{s}}{t}$

s = 3.47 correct to 3 significant figures

t = 8.132 correct to 4 significant figures

By considering bounds, work out the value of m to a suitable degree of accuracy. Give a reason for your answer.

(Total for Question 18 is 5 marks)

(a) On the grid above, sketch the graph of y = f(-x)

(b) On this grid, sketch the graph of y = -f(x) + 3

(1)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

20 Solve algebraically the simultaneous equations

$$x^2 + y^2 = 25$$
$$y - 2x = 5$$

(Total for Question 20 is 5 marks)

21 In triangle *RPQ*,

RP = 8.7 cmPQ = 5.2 cmAngle $PRQ = 32^{\circ}$

(a) Assuming that angle *PQR* is an acute angle, calculate the area of triangle *RPQ*.Give your answer correct to 3 significant figures.

	cm ²
(b) If you did not know that angle <i>PQR</i> is an acute ar your calculation of the area of triangle <i>RPQ</i> ?	ngle, what effect would this have on
	(1)
	(Total for Question 21 is 5 marks)

135

DO NOT WRITE IN THIS AREA

22 A frustum is made by removing a small cone from a large cone as shown in the diagram.

The frustum is made from glass. The glass has a density of $2.5 \text{ g}/\text{cm}^3$

Work out the mass of the frustum. Give your answer to an appropriate degree of accuracy.

(Total for Question 22 is 5 marks)

TOTAL FOR PAPER IS 80 MARKS

g

DO NOT WRITE IN THIS ARE

Paper 1MA	1: 2H			
Question	Working	Answer		Notes
1		96	Pl	a strategy to start to solve the problem eg $18 \div (7 - 4)$ (=6)
			P1	for completing the process of solution eg " $6" \times (4 + 5 + 7)$
			A1	cao
2		20.9	M1	correct recall of appropriate formula eg sin $x = \frac{5}{14}$
			$\mathbf{A1}$	for 20.9(248)
3 (a)		4n+2	Μ	start to deduce nth term from information given eg $4n+k$ where $k\neq 2$
			$\mathbf{A1}$	cao
(q)		No (supported)	M1	starts method that could lead to a deduction eg uses inverse operations
			C1	for a convincing argument eg 34 is 107 so NO; (108–5)÷3 is not an integer
4		conclusion	P1	$30 \div 70 \ (=0.428)$ $26 \div 60 \ (=0.4333)$ $30 \div 26 \ (=1.153)$
		(supported)	P1	$60 \times "0.428$ $70 \times "0.4333$ $60 \times "1.153$
			C1	for conclusion linked to 25.7 mins, 30.3 miles or 69.2 mph

Paper 1MA1	l: 2H			
Question	Working	Answer		Notes
5 (a)		$22 \leq f < 24$	B1	
(q)		21.9	M1	$x \times f$ using midpoints
			M1	(dep on previous mark) " $x \times f$ " + 40
			A1	accept 22 if working seen
9		9.54	P1	$10^2 - 5^2 (=75)$
			P1	$(.75) + 4^{2} (=91)$
			P1	$\sqrt{(10^2 - 5^2 + 4^2)}$
			A1	9.53 – 9.54
7 (a)		(1, 4)	B1	
(q)		-0.4, 2.4	B1	
(c)		3.75	B 1	accept 3.7 – 3.8
8		6:2:1	M1	for correct interpretation of any one statement eg. 3 : 1; 1 : 0.5
			A1	accept any equivalent ratio eg. 3 : 1 : 0.5

Paper 1MA	1: 2H			
Question	Working	Answer		Notes
6		203	P1	translate into algebra for rectangle: $4x+4x+3x+4+3x+4$ (=14x+8) or for trapezium: $5x+5x+x-3+7x-3$ (=18x-6)
			P1	equating: eg 18 <i>x</i> -6=14 <i>x</i> +8 (4 <i>x</i> =14)
			A1	solving for <i>x</i> : $x=14/4 = 3.5$ oe
			P1	process to find area: " 3.5 " × $3+4$ (ft) or " 3.5 " × 4 ft
			A1	cao
10 (a)		1.8%	P1	for start to process eg. 2000×1.025 (=2050)
			P1	for process to use all given information eg "2050" × $m^2 = 2124.46$
				or "2050"x $\left(1 + \frac{x}{100}\right)^2 = 2124.46$
			P1	for process to find their unknown eg $m = \sqrt{\frac{2124.46}{2050}} (= 1.01799)$
			A1	for 1.79% – 1.8 %
(q)		200	M1	225 ÷ 1.125 oe
			A1	

Paper 1MA1	1: 2H			
Question	Working	Answer		Notes
11		29°	C1	angle $OTP = 90^{\circ}$, quoted or shown on the diagram
			M1	method that leads to $180 - (90 + 32)$ or 58 shown at <i>TOP</i> OR that leads to 122 shown at <i>SOT</i>
			M1	complete method leading to "58"+2 or (180 – "122") + 2 or 29 shown at TSP
			C1	for angle of 29° clearly indicated and appropriate reasons linked to method eg angle between <u>radius</u> and <u>tangent</u> = $\underline{90^{\circ}}$ and sum of <u>angles</u> in a <u>triangle</u> = $\underline{180^{\circ}}$; <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>int opp</u> <u>angles</u> and base <u>angles</u> of an <u>isos</u> triangle are <u>equal</u> or <u>angle</u> at <u>centre</u> = $\underline{2x}$ angle at <u>circumference</u> or <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>int opp angles</u> int <u>opp angles</u> at <u>circumference</u> or <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>int opp angles</u> at <u>circumference</u> or <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>angles</u> at <u>centre</u> = $\underline{2x}$ angles at <u>circumference</u> or <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>int opp angles</u> at <u>circumference</u> or <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>int opp angles</u> at <u>circumference</u> or <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>int opp angles</u> at <u>circumference</u> or <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>int opp angles</u> at <u>circumference</u> or <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>int opp angles</u> at <u>circumference</u> or <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>int opp angles</u> at <u>circumference</u> or <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>int opp angles</u> at <u>circumference</u> or <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>int opp angles</u> at <u>circumference</u> or <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>int opp angles</u> at <u>circumference</u> or <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>triangle</u> <u>at circumference</u> or <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>triangle</u> <u>at circumference</u> <u>at a triangle</u> <u>at a triangle</u> <u>at a triangle</u> <u>at a t a triangle</u> <u>at a t a t a t a t a t a t a t a t a t</u>
12 (a)		0.4,0.6	B1	correctly placing probs for light A eg 0.4, 0.6
		0.3,0.7,0.8,0.2	B1	correctly placing probs for light B eg 0.3, 0.7, 0.8, 0.2
(q)		B with correct	Pl	(ft) eg 0.4×0.3 or 0.6×0.8 or $1-(0.28+0.12)$
		probabilities	Pl	both sets of correct probability calculations
			C1	Correct interpretation of results with correct comparable results
13		20	M1	Establishing method linked to proportion eg $d=k+c$ or $25=k+280$
			M1	(dep) substitution eg $d = 7000 \div 350$ or $25 \times 280 \div 350$ oe
			Al	cao

	Notes	M1 for 3 out of 4 terms correct in the expansion of $(2n + 1)^2$ or $(2n + 1) \{(2n + 1) - 1\}$	P1 for $4n^2 + 2n$ or equivalent expression in factorised form	C1 for convincing statement using $2n(2n + 1)$ or $2(2n^2 + n)$ or $4n^2 + 2n$ to prove the result	M1 For a fully complete method as far as finding two correct decimals that, when subtracted, give a terminating decimal (or integer) and showing intention to subtract eg $x = 0.25$ so $10x = 2.55$ then $9x = 2.3$ leading to	A1 correct working to conclusion	M1 for $(3x \pm 5)(2x \pm 1)$ or $(2x + 1)(2x - 1)$	M1 $\frac{1}{(3x\pm5)(2x\pm1)} \times (2x+1)(2x-1)$	A1	M1 $\frac{40}{360} \times 2 \times \pi \times 7$ oe	A1 4.8-4.9
	Answer	proof (supported)			- <u> </u>	×	$\frac{2x+1}{2}$	3x + 5		4.89	
1:2H	Working	$\begin{array}{c} (4n^{2}+2n+2n+1) \\ -(2n+1)= \\ 4n^{2}+4n+1-2n-1 \end{array}$	$=4n^2+2n$ =2n(2n+1)								
Paper 1MA	Question	14			15		16			17	

Paper 1MA1	1: 2H			
Question	Working	Answer		Notes
18		0.229 With Explanation	B1	Finding bound of s: 3.465 or 3.475 or 3.474999 or Finding bound of t: 8.1315 or 8.1325 or 8.132499
			P1	Use of "upper bound" and "lower bound" in equation
			P1	Process of choosing correct bounds eg $\frac{\sqrt{3.475}}{8.1315}$ or $\frac{\sqrt{3.465}}{8.1375}$
			A1	For 0.2292 and 0.2288 from correct working
			C1	For 0.229 from 0.2292 and 0.2288 since both LB and UB round to 0.229
19 (a)		Sketch	P1	Parabola passes through all three of the points (0, 4), (2,0), (4, 4)
(q)		Sketch	P1	Parabola passes through all three of the points $(-4, -1), (-2, 2), (0, -1)$
20		x=0, y=5	M1	Initial process of substitution eg $x^2 + (2x + 5)^2$ (=25)
			M1	for expanding and simplifying eg $x^2 + 4x^2 + 10x + 10x + 25$ (=25)
			M1	Use of factorisation or correct substitution into quadratic formula or completing the square to solve an equation of the form $ax^2 + bx + c = 0, a \neq 0$
			A1	correct values of x or y
			C1	x = 0, x = -4, y = 5, y = -3 correctly matched x and y values

	Notes	start to process eg draw a labelled triangle or use of sine rule $\frac{\sin Q}{8.7} = \frac{\sin 32}{5.2}$	process to find of $Q eg Q = \sin^{-1} \left[\frac{\sin 32}{5.2} \times 8.7 \right]$	process to find area of triangle <i>PRQ</i> .	22.5 – 22.6	angle PRQ is obtuse so need to find area of two triangles.	process using similar triangles to find base of small cone eg. 4 cm used as diameter or 2 cm used as radius	process to find volume of one cone	complete process to find volume of frustum complete process to find mass or 1360 – 1362	1361 or 1360 or 1400
		P1	P1	P1	A1	C1	P1	P1	P1 P1	$\mathbf{A1}$
	Answer	130					1361			
: 2H	Working									
Paper 1MA1	Question	21 (a)				(q)	22			

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015

Surname	Other	names
earson Edexcel evel 1/Level 2 GCSE (9 - 1)	Centre Number	Candidate Number
Mathemat	tics	
Mathemat Paper 3 (Calculator)	tics	
Mathemat Paper 3 (Calculator)	tics	Higher Tie
Mathemat Paper 3 (Calculator) Sample Assessment Materials – Issue 2	tics	Higher Tiel Paper Reference

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** guestions.
- Answer the questions in the spaces provided - there may be more space than you need.
- Calculators may be used.
- If your calculator does not have a π button, take the value of π to be 3.142 unless the question instructs otherwise.
- Diagrams are **NOT** accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The total mark for this paper is 80
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.

S48576A
©2015 Pearson Education Ltd.
6/4/7/7/4/6/6/6/

Answer ALL questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 The diagram shows a trapezium *ABCD* and two identical semicircles.

The centre of each semicircle is on DC.

Work out the area of the shaded region. Give your answer correct to 3 significant figures.

(Total for Question 1 is 4 marks)

Asif is going on holiday to Turkey. 2 DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS ARE

3 Here are the first six terms of a Fibonacci sequence.

1 1 2 3 5 8

The rule to continue a Fibonacci sequence is,

the next term in the sequence is the sum of the two previous terms.

(a) Find the 9th term of this sequence.

The first three terms of a different Fibonacci sequence are

a b a+b

(b) Show that the 6th term of this sequence is 3a + 5b

Given that the 3rd term is 7 and the 6th term is 29,

(c) find the value of *a* and the value of *b*.

(3)

(1)

(2)

(Total for Question 3 is 6 marks)

4 In a survey, the outside temperature and the number of units of electricity used for heating were recorded for ten homes.

The scatter diagram shows this information.

DO NOT WRITE IN THIS AREA

OT WRITE IN THIS AREA

NOT WRITE IN THIS AREA

5 Henry is thinking of having a water meter.

These are the two ways he can pay for the water he uses.

Water Meter

A charge of £28.20 per year

plus

91.22p for every cubic metre of water used

1 cubic metre = 1000 litres

No Water Meter

A charge of £107 per year

Henry uses an average of 180 litres of water each day.

Use this information to determine whether or not Henry should have a water meter.

© Pearson Education Limited 2015

(Total for Question 5 is 5 marks)

6 Liz buys packets of coloured buttons.

There are 8 red buttons in each packet of red buttons. There are 6 silver buttons in each packet of silver buttons. There are 5 gold buttons in each packet of gold buttons.

Liz buys equal numbers of red buttons, silver buttons and gold buttons.

How many packets of each colour of buttons did Liz buy?

packets of red buttons

packets of silver buttons

packets of gold buttons

(Total for Question 6 is 3 marks)

DO NOT WRITE IN THIS AREA

Mark (m)Cumulative frequency $0 < m \le 10$ 8 $0 < m \le 20$ 23 $0 < m \le 30$ 48 $0 < m \le 40$ 65 $0 < m \le 50$ 74 $0 < m \le 60$ 80

(a) On the grid, plot a cumulative frequency graph for this information.

DO NOT WRITE IN THIS

DO NOT WRITE IN THIS ARE

Students either pass the test or fail the test. The pass mark is set so that 3 times as many students fail the test as pass the test.

(c) Find an estimate for the lowest possible pass mark.

(3)

(Total for Question 7 is 6 marks)

Write 0.000068 in standard form. 8

(Total for Question 8 is 1 mark)

11 Solve $x^2 - 5x + 3 = 0$

Give your solutions correct to 3 significant figures.

(Total for Question 11 is 3 marks)

12 Sami asked 50 people which drinks they liked from tea, coffee and milk.

- All 50 people like at least one of the drinks
- 19 people like all three drinks.
- 16 people like tea and coffee but do **not** like milk.
- 21 people like coffee and milk.
- 24 people like tea and milk.
- 40 people like coffee.
- 1 person likes only milk.

Sami selects at random one of the 50 people.

(a) Work out the probability that this person likes tea.

(b) Given that the person selected at random from the 50 people likes tea, find the probability that this person also likes exactly one other drink.

(4)

(Total for Question 12 is 6 marks)

DO NOT WRITE IN THIS ARE

13 *ABCD* is a rhombus.

M and N are points on BD such that DN = MB.

Prove that triangle *DNC* is congruent to triangle *BMC*.

(Total for Question 13 is 3 marks)
(2)

(1)

14 (a) Show that the equation $x^3 + 4x = 1$ has a solution between x = 0 and x = 1

(b) Show that the equation $x^3 + 4x = 1$ can be arranged to give $x = \frac{1}{4} - \frac{x^3}{4}$

(c) Starting with $x_0 = 0$, use the iteration formula $x_{n+1} = \frac{1}{4} - \frac{x_n^3}{4}$ twice, to find an estimate for the solution of $x^3 + 4x = 1$

(3)

(Total for Question 14 is 6 marks)

15 There are 17 men and 26 women in a choir. The choir is going to sing at a concert. One of the men and one of the women are going to be chosen to make a pair to sing the first song. (a) Work out the number of different pairs that can be chosen. (2) Two of the men are to be chosen to make a pair to sing the second song. Ben thinks the number of different pairs that can be chosen is 136 Mark thinks the number of different pairs that can be chosen is 272 (b) Who is correct, Ben or Mark? Give a reason for your answer. (1) (Total for Question 15 is 3 marks)

DO NOT WRITE IN THIS AREA

...cm²

16 *VABCD* is a solid pyramid.

ABCD is a square of side 20 cm.

The angle between any sloping edge and the plane ABCD is 55°

Calculate the surface area of the pyramid. Give your answer correct to 2 significant figures.

(Total for Question 16 is 5 marks)

17 Louis and Robert are investigating the growth in the population of a type of bacteria. They have two flasks A and B.

At the start of day 1, there are 1000 bacteria in flask A. The population of bacteria grows exponentially at the rate of 50% per day.

(a) Show that the population of bacteria in flask A at the start of each day forms a geometric progression.

The population of bacteria in flask A at the start of the 10th day is k times the population of bacteria in flask A at the start of the 6th day.

(b) Find the value of *k*.

At the start of day 1 there are 1000 bacteria in flask B. The population of bacteria in flask B grows exponentially at the rate of 30% per day.

(c) Sketch a graph to compare the size of the population of bacteria in flask A and in flask B.

(2)

(2)

(Total for Question 17 is 5 marks)

161

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

OMA, ONB and *ABC* are straight lines. *M* is the midpoint of *OA*. *B* is the midpoint of *AC*. $\overrightarrow{OA} = 6\mathbf{a}$ $\overrightarrow{OB} = 6\mathbf{b}$ $\overrightarrow{ON} = k\mathbf{b}$ where *k* is a scalar quantity.

Given that *MNC* is a straight line, find the value of *k*.

18

162

TOTAL FOR PAPER IS 80 MARKS

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

BLANK PAGE

BLANK PAGE

Paper 1MA	A1: 3H			
Question	Working	Answer		Notes
		252	P1 M1 P1	For start to process eg. radius = $12 \div 4$ (=3) Method to find area of trapezium or semicircle or circle Process to find area of the shaded region
			A1	251.7 - 252
2 (a)	550×3.5601	1958	M1 A1	550 × 3.5601
(q)	$210 \div 7 \times 2 = 30 \times 2$ Or $60 \div 2 = 30$ and $30 \times 7 = 210$	Shown	C1 M1	For correct method to convert cost in UK to lira or vice versa, using Asif's approximation Shown with correct calculations
(c)		Correct evaluation	Cl	For an evaluation e.g. It is a sensible start to the method because he can do the calculations without a calculator and 3.5 lira to the \pounds is a good approximation
3 (a)	8, 13, 21,	74	B1	cao
(q)	a,b,a+b,a+2b,2a+3b	Shown	M1 C1	Method to show by adding pairs of successive terms $a + 2b$, $2a + 3b$ shown
(2)	3a + 5b = 29a + b = 73a + 3b = 21b = 4, a = 3	a = 3 b=4	P1 P1 A1	Process to set up two equations Process to solve equations

Paper 1M	A1: 3H			
Question	Working	Answer		Notes
4 (a)	Draws LOBF	No + reason	Al Interpret que	stion eg. draw line of best fit
	Finds ht÷base = $\frac{85 - 20}{0 - 25} = -2.6$		A_1 Start to test ϵ	eg. gradient e.g. $\frac{85 - 20}{0 - 25} = -2.6$
			Gradient wit	hin range $\pm(2 - 3)$ and 'no'
(q)		The LOBF would	Convincing	explanation
		have to be used		
		outside the data		
5		Have a water	1 Process to f	ind number of litres eg. $180 \div 1000$
		meter	1 Full proces	s to find cost per day
		(from working with	1 Full proces	s to find total cost of water used per year (accept
		correct figures)	use of alter	native time period for both options)
			1 Full proces	s with consistent units for total cost of water
			A1 Correct dec	ision from correct figures (88.13154 or correct
			figure for th	neir time period)
9		15, 20, 24	P1 Process to	start to find common multiple eg. prime factor
			decomposit	ion of 6 and 8 or list of at least 3 multiples of all
			numbers	
			P1 process to f	ind number of packets for at least colour or 120
			Identified	
			۸1	

Paper 1M	A1: 3H			
Question	Working	Answer		Notes
7 (a)		11A	M1	For a cumulative frequency diagram with at least 5 points plotted correctly at the ends of the intervals
			C1	For correct graph with points joined by curve or straight line segments
				[SC B1 if the shape of the graph is correct and 5 points of their points are not at the ends but consistently within each interval and joined.]
(q)		26.5	B1	25 - 28
(c)	$80 \div 4 \times 3 = 60$ Draw line norallal to mark avis from	36.5	P1	For process to find number who failed eg $80 \div 4 \times 3 = 60$
	CF = 50		P1	Draw line parallel to mark axis from $CF = "60"$ and read off
			A1	For 35 - 38
∞		$6.8 imes 10^{-5}$	B1	

r 1MA1: 3H Work (a) (a) (b) $6x - x > 17 - 4$ (c) (a) (a) (b)	$\begin{bmatrix} -2 & -1 & -2 \\ -2 & -1 & -1 \end{bmatrix}$	$\begin{array}{c} \text{nswer} \\ 6)(y+1) \\ 2.6 \\ 2.6 \\ 0, 1, 2, 3 \\ 0, 1, 2, 3 \\ \hline 4 \end{array}$	M1 for $(y \pm 6)(y \pm 1)$ A1 A1 A1 for method to isolate terms in x in an inequality or an equation A1 oe eg. $\frac{13}{5}$ M1 for or -2.5 < n ≤ 3 or -4, -2, 0, 2, 4, 6 or -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 A1 oe A1 oe A1 oe
		$\frac{13}{16}$	P1 for start to process e.g f(4k) = $16k - 1$ or $g(2) = \frac{12 + 1}{4}$ A1

aper 1MA	M1: 3H Working	Ancurow		Notos
nconon	$-5 + \sqrt{1-5} - \sqrt{1-5}$	4.30 or 0.697	M1	Substitute into quadratic formula - allow sign errors
	$x = \frac{1}{2} $		M1	Evaluate as far as $\frac{5 \pm \sqrt{13}}{13}$
_	$\frac{5\pm\sqrt{13}}{2}$			2
	7		A1	
(a)	Draws correct Venn diagram	$\frac{44}{50}$	M1	Begin to interpret given information e.g. 3 overlapping labelled ovals with central region correct
			M1	Extend interpretation of given information e.g. 3 overlapping labelled ovals with at least 5 regions correct
			M1	Method to communicate given information e.g. 3 overlapping labelled ovals with all regions correct including outside
			A1	Oe
(p)		$\frac{21}{44}$	P1	For correct process to identify correct regions in Venn diagram and divide by '44'
			A1	
	DN = MB (given) $\angle NDC = \angle MBC$ (base angles of	Proof	C1 C1	One correct relevant statement All correct relevant statements
	isosceles triangle) DC = BC (sides of a rhombus are		CI	Correct conclusion with reasons
	$\therefore \Delta DNC = \Delta BMC (SAS)$			

Paper 1M	A1: 3H			
Question	Working	Answer		Notes
14 (a)	F(x) = $x^3 + 4x - 1$ F(0) = -1, F(1) = 4	Shown	M1	Method to establish at least one root in [0,1]e.g $x^3 + 4x - 1$ (=0) and F(0)(=-1), F(1) (= 4) oe
			A1	Since there is a sign change there must be at least one root in $0 < x < 1$ (as F is continuous)
(q)	$4x = 1 - x^3$	Shown	CI	C1 for at least one correct step and no incorrect ones
	Or $\frac{x^3}{4} + x = \frac{1}{4}$			
	4			
(c)	$x_1 = \frac{1}{4} - \frac{0}{4} = \frac{1}{4}$	0.246(09375) Or	B1	$x_1 = \frac{1}{4}$
		63		.(1),
	$x_2 = \frac{1}{4} - \frac{\left(\frac{1}{4}\right)}{4} = \frac{1}{4} - \frac{1}{266}$	256	M1	M1 for $x_2 = \frac{1}{4} - \frac{\left(\frac{1}{4}\right)}{4}$
	0C2 4 4 4		A 1	
			11.7	256 256 321 321 3256
15 (a)	Number of men possible is 17	442	P1	Process to find number of combinations
	Number of women possible is 26 Each man can be paired with 26 different women		A1	
	17×26			
(q)		Ben with reason	C1	Convincing reason e.g. correct calculation is $17 \times 16 \div 2$

Paper 1MA	A1: 3H			
Question	Working	Answer		Notes
16	$AC^{2} = 20^{2} + 20^{2} = 800$ $AX^{2} = 10^{2} + 10^{2} = 200$ $\sqrt{200} \times \tan 55 = VX (= 20.19)$ $VM^{2} = \sqrt{20.19^{12} + 10^{2}} (= 22.54)$ $4 \times \frac{1}{2} \times 22.54^{1} \times 20 + 20^{2}$	1300	P1 P1 P1 P1 A1	Let <i>X</i> be centre of base, <i>M</i> be midpoint of <i>AB</i> process to find <i>AC</i> or <i>AX</i> process to find <i>VX</i> or <i>VA</i> process to find height of sloping face or angle of sloping face. For 1300 – 1302
17 (a)	1000, 1500, 2250,	Correct Argument	M1 C1	Method to find 1st 3 terms Convincing reason e.g. common ratio is 1.5
(q)	$1000 \times 1.5^9 = k \times 1000 \times 1.5^5$ $k = \frac{1.5^9}{1.5^5}$	5.0625	P1 A1	Process to find the value of k
(c)		Correct sketches	C1	Draws both exponential curves intersecting on y axis and clearly labelled

Paper 1MA	V1: 3H			
Question	Working	Answer		Notes
18	$\vec{OM} = 3a$	4	P1	For process to start e.g. $\vec{OM} = 3a$ or
	$\overrightarrow{AB} = 6\mathbf{b} - 6\mathbf{a}$			$\vec{MA} = 3a$
	$\vec{MC} = 3\mathbf{a} + 2(6\mathbf{b} - 6\mathbf{a})$		P1	For process to find \overrightarrow{AB} (=6b - 6a)
	= 12b - 9a = 3(4b - 3a)		P1	For process to find \vec{MC} (=3a + 2(6b - 6a) and
	$\dot{M}N = k\mathbf{b} - 3\mathbf{a}$		P1	\overrightarrow{MN} (= $k\mathbf{b}$ -3a) For correct process to find k e.g. $3k\mathbf{b}$ - $9\mathbf{a}$ = 12b - $9\mathbf{a}$
	<i>MNC</i> is a straight line so		A1	
	\vec{MC} is a scalar multiple of \vec{MN}			

Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Mathematics - Sample Assessment Materials (SAMs) - Issue 2 - June 2015 © Pearson Education Limited 2015

edexcel

For information about Edexcel, BTEC or LCCI qualifications visit qualifications.pearson.com

Edexcel is a registered trademark of Pearson Education Limited

Pearson Education Limited. Registered in England and Wales No. 872828 Registered Office: 80 Strand, London WC2R 0RL VAT Reg No GB 278 537121

